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Abstract

This thesis introduces how to perform the renormalization group (RG) prescription
in the modern tensor-network language to extract scaling dimensions of a critical
system—write down the tensor RG equation, identify a fixed-point tensor, linearize
the RG equation around this fixed point, and calculate scaling dimensions from the
eigenvalues of the resulting linearized RG equation.

A traditional RG transformation is based on the Hamiltonian (or energy) description
of a statistical system; the RG equation is a map from the old Hamiltonian to the
coarse-grained Hamiltonian. The real-space RG transformations—the decimation for
example—are intuitive and have a clear physical picture. Nevertheless, in the textbook
example of a real-space RG transformation, Migdal-Kadanoff bond moving scheme,
the approximations are uncontrollable, so the estimation of the scaling dimensions
cannot be improved systematically.

Recently, ideas from quantum information have stimulated novel types of real-
space RG transformations based on a tensor-network representation of a statistical
system. The coarse graining of this modern tensor-network-based RG resembles the
conventional block-spin method, inheriting the clear physical picture, and is even more
straightforward to define than the Hamiltonian-based description. The advantage of
the tensor-network-based RG over the Migdal-Kadanoff idea is that the approximations
of the former can be controlled by an integer called the bond dimension.

If the traditional RG prescription for extracting scaling dimensions work in the
tensor-network-based RG method, we then have a kind of real-space RG that is both
intuitive and quantitatively accurate. The main result of the thesis is to show that the
above “if” statement is true, by proposing a general framework of the tensor-network-
based RG prescription and a concrete numerical realization of the general framework,
benchmarked in the context of the two-dimensional Ising model.

Thesis Supervisor: Naoki Kawashima
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Chapter 1

Introduction

The renormalization group (RG) is a powerful technique for studying physical systems

where fluctuations in all scales of length are important [61]. In statistical mechanics,

the most famous example is critical phenomena. Take water as an example, imagine

the temperature and pressure are increased along the liquid-vapor coexistence line,

when we reach a temperature of 374∘C and pressure of 218 atm, the liquid-vapor

phase-separation boundary starts vanishing and the density of water fluctuates at all

scales of length. The density fluctuations with the order of hundreds of nanometers

will scatter visible light strongly. The water looks milky due to such fluctuations. The

RG can be applied to critical phenomena like this, being able to make predictions

that agree with experiment results.

1.1 Conventional RG in Hamiltonian-based language

Conventional RG schemes, such as 𝜖-expansion [62] and block-spin methods [28, 29, 44,

30, 47], are based on Hamiltonian description of a physical system. We look for a map

from the Hamiltonian describing the system at a short scale of length to an effective

Hamiltonian describing the system at a longer one, such that the partition function

is unchanged [4]. The map is known as an RG equation. A fixed point of the RG

equation corresponds to a conformal field theory (CFT) [49, 46]. A critical system is

described by a fixed point. Universal properties like scaling dimensions of the critical
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system can be extracted from the behavior of the RG equation near the corresponding

fixed point. The critical exponents, closely related to the scaling dimensions, are

physical observables that can be compared with experiment results. In this thesis,

the procedure of extracting critical exponents from the linearized behavior of the

RG equation around a critical fixed point is referred to as canonical RG prescription.

Besides giving us physical observables, this canonical RG prescription also helps us

understand universality in critical phenomena.

In principle, the exact RG equation is a transformation from an infinite-dimensional

space to another infinite-dimensional space [61, 58]. For a practical implementation

of the RG idea, approximations are necessary. Some approximation schemes, like

Migdal-Kadanoff bond moving approximation [44, 43, 30] (see Section 2.3.2 for details),

are easy to implement but their results cannot be improved systematically. To find a

controllable approximation, people have developed perturbative expansions based on

small parameters related to, for example, the spatial dimension (𝜖 expansion [62]), in-

ternal freedom of the statistical variable (1/𝑛 expansion [6]), and ranges of interactions

(Niemeijer-van Leeuwen cumulant approximation [47]). However, these expansions are

nontrivial to calculate and often yield asymptotic series, which are non-convergent

and should be treated by summation techniques in general.

There is an even more annoying and subtle problem about the Hamiltonian-based

real-space RG transformations, though might be less familiar [23, 55]. A real-space RG

transformation needs to be first defined as a map from a probability distribution of a

local configuration of old spins to that of coarser spins, after which we then determine

effective Hamiltonian corresponding to the probability distribution of coarser spins (see

the decimation of the 1D Ising model in Section 2.1 for a concrete example). However,

in the thermodynamic limit, we may not be able to find the effective Hamiltonian

given the probability distribution of coarser spins; this means that the real-space

RG transformation sometimes even does not exist (see Fig. 1-1) in the Hamiltonian-

based language! This potential pathologies limit the practical implementation of the

real-space RG idea in the conventional Hamiltonian space.

18
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Figure 1-1: How an RG transformation is defined. 𝜇 is the probability measure
for a system with Hamiltonian 𝐻, usually with the form 𝜇 ∝ 𝑒−𝐻 . A real-space RG
transformation is first defined as a map 𝜇 → 𝜇′. In Hamiltonian-based language,
upon imposing that the coarser probability distribution has the form 𝜇′ ∝ 𝑒−𝐻′ , we
determine the coarser Hamiltonian 𝐻 ′, thus inducing the Hamiltonian-based RG
equation 𝒯 old : 𝐻 → 𝐻 ′. The last step might be ill-defined. In tensor-network-based
RG, the Hamiltonian description of the system is not necessary, and we can work with
the map 𝒯 : 𝜇→ 𝜇′ between probability distributions directly.

1.2 Monte Carlo RG

Besides implementing the RG transformation deterministically, it is also possible to

apply the Monte Carlo (MC) sampling to the above Hamiltonian-based RG idea [41, 53].

After reaching equilibrium, an MC simulation samples snapshots of configurations

following the usual thermal distribution of a given Hamiltonian. From the sequence of

snapshots, correlation functions can be calculated. A real-space RG transformation

now can be applied to each sample configuration to generate a coarser configuration.

For example, a block-spin transformation according to the majority rule can be applied

to each 3× 3 block of original spins for the 2D Ising model. The coarser snapshots of

configurations correspond to what we would get if an MC simulation had been applied

to sample the coarser Hamiltonian obtained using a deterministic RG transformation.

If we apply the MC simulation to the original Hamiltonian at criticality, we can use

the two sequences of the original and coarser samples to calculated the linearized

RG equation near the fixed-point Hamiltonian, from which the scaling dimensions

can be extracted. Recent developments in the machine learning community and

information theory [34, 36] provide a novel way to learn an optimal real-space RG

transformation for generating the coarser configurations to keep the interactions in

the renormalization Hamiltonian as local as possible. For example, the neural Monte

Carlo RG (MCRG) [9] provides better estimations of the scaling dimensions of the 3D
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Ising model than the majority rule does.

1.3 Tensor-network-based RG

Novel types of RG schemes based on tensor-network language have been booming

recently, initially inspired by the development of quantum information. They are

versatile numerical RG methods; different physical models correspond to different

initial tensors, while the tensor-network RG equation shares a universal form. The idea

is to skip the Hamiltonian description altogether, focusing instead on the probability

distribution of local configurations directly ; the RG equation is a map from a tensor

encapsulating the probability distribution of local configurations at a short length

scale to a coarser tensor at a longer one (see Fig. 1-1). It is Levin and Nave who

proposed the first numerical implementation of this tensor-network RG idea, tensor

renormalization group (TRG), in 2007. The TRG is designed for two-dimensional

(2D) classical systems (or (1 + 1)-dimensional quantum systems), and has an excellent

performance in calculations of free energy, with its approximation controlled by an

integer 𝜒, called the bond dimension. The larger the value of 𝜒, the more time the

computation takes, the better the approximation becomes, and the more accurate the

estimation of free energy is. Later, people realized that even better approximation

can be achieved by considering a larger environment [64, 67, 63, 45]. With the help

of these tensor-network RG methods like the TRG, we can easily calculate the free

energy of, for example, the 2D Ising model, with an error of order 10−7 within one

minute in a desktop computer (see Section 3.3 for details). The accuracy improves

exponentially as 𝜒 increases, while the computation cost only grows polynomially.

Generalizations to three-dimensional (3D) classical systems (or (2 + 1)-dimensional

quantum systems) are also successful [63, 1, 31], the earliest of which is higher-order

tensor renormalization group (HOTRG) [63] proposed in 2012.

Advantages of tensor-network-based RG and a missing piece Why do we

care about developing these novel RG schemes in tensor-network language, instead of
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sticking with the well-developed Hamiltonian-based RG? Tensor-network-based RG is

a different perspective to understand and implement the RG idea. It has the following

advantages compared with the Hamiltonian-based RG. First of all, the growing range of

interactions in Hamiltonian language (see Section 2.3 for a short review) is replaced by

the growing of the number of states (or the bond dimension) of the tensor legs, while

the interaction range in the tensor-network picture remains short-ranged, mediated by

nearest-neighbor tensors (see Eqs. (3.5), (3.6) and Fig. 3-2). In addition, the map from

an old tensor 𝐴 to a coarser tensor 𝐴𝑐 is explicit, while the RG equation in Hamiltonian

language is complicated by the nonlinear exponential and logarithmic transformations

(see Fig. 1-1). Due to these two advantages, it is now possible to establish rigorous

theorems about the behavior of an exact tensor-network-based RG equation near

the high-temperature fixed-point tensor located in an infinite-dimensional Hilbert

space [33].

As a numerical method, the above-mentioned two advantages make it easier to

improve the estimations of the tensor-network-based RG systematically. It also has

advantages in quantum systems and classical frustrated systems, where the complex

Boltzmann weight and long relaxation time make MC simulations in MCRG quite

nontrivial.

Finally, the coarse-graining step is easier to grasp in this modern tensor-network

language (see Chapter 3). Pedagogically, it can supplement the conventional example of

the decimation for one-dimensional (1D) Ising model (see Section 2.1 and Section 4.2.1)

and serve as a generalization of the Migdal-Kadanoff bond moving approximations in

higher dimensions (see Section 2.3.2 and Section 3.2.2). A tensor-network RG equation

and its linearized version can be much simpler than its Hamiltonian counterpart.

However, these tensor-network RG techniques still miss an important aspect as

real-space RG transformations: the canonical RG prescription for extracting universal

properties of a critical system.
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1.4 Does the canonical RG prescription work in tensor-

network language?

The unprecedented success of the tensor-network-based RG is mainly demonstrated

by its accurate estimation of free energy. However, the free energy of a system is often

not a direct physical observable. In order to get physical observables that can be

compared to experiment, we need to take derivatives of free energy with respect to

various parameters like temperature and external magnetic field. This is a possible

way to proceed in these tensor-network-based RG methods [63, 27, 39], but may not

be the best one.

The advantage of the RG idea is its canonical prescription for extracting physical

observables by studying the behavior of the RG equation near a critical fixed point:

it avoids dealing with the divergence directly but can tell us how physical observ-

ables diverge in a clever way. Therefore, we want to ask whether the canonical RG

prescription works in these tensor-network RG schemes.

Early attempts Several attempts were made to carry out the canonical RG pre-

scription in tensor-network language. In 2008, just one year after Levin and Nave

proposed the TRG, Hinczewski and Berker [27] first analyzed the tensor RG flows

generated by the TRG. What they discovered is interesting. By fine-tuning the

temperature of the 2D Ising model on a triangular lattice, they found that for bond

dimensions 𝜒 ≤ 8, the tensor would flow to the critical fixed point before flowing away

to the high- and low-temperature trivial fixed points. When they increased the bond

dimensions to 𝜒 = 12 and further, the tensor RG equation ceases to exhibit a critical

fixed point. This means that the canonical RG prescription is limited to 𝜒 ≤ 8 in any

tensor RG scheme that generates RG flows similar to the TRG. People have tried the

RG prescription at 𝜒 = 2, 3, 4 in the context of the 2D Ising model, and the estimated

scaling dimension of the energy density operator has an accuracy similar to the old

potential moving tricks [27, 2, 42], and that of the spin operator is more than a factor

of 2 larger than the exact value [15]
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Peculiar RG flows generated by early tensor-network RG schemes and the

possible solutions The problem of the RG flow noticed by Hinczewski and Berker

might be unfamiliar since it seldom occurs in the examples of the RG discussed in

textbooks. Actually, Wilson, one of the architects of the RG idea, did notice that

there is no guarantee for the RG transformations to exhibit fixed points, and called it

“a serious problem with the renormalization-group transformations” in his 1982 Nobel

prize lecture [61].

In the last ten years, many tricks have been proposed to rectify the tensor RG

flows generated by the TRG. Following Levin’s suggestion [38, 37], Gu and Wen

identified the cause of the peculiar tensor RG flows to be a type of tensors with a

corner double-line (CDL) structure, representing local correlations. Since CDL tensors

are fixed points of the TRG transformation, the local correlations at the original

lattice scale will be carried to the larger scales. By filtering out the tensors with CDL

structure, several advanced tensor-network RG techniques [24, 18, 16, 65, 3] are able

to produce the critical fixed-point tensor of the 2D Ising model at a general bond

dimension.

Since a system at the critical fixed point is described by a CFT, the tensor network

formed by the critical fixed-point tensor of the 2D Ising model represents the partition

function of the 2D Ising CFT. According to a well-known 2D CFT theorem [8], Gu and

Wen [24] pointed out that the scaling dimensions of the CFT can be extracted from

the eigenvalues of the system’s transfer matrix constructed from the fixed-point tensor.

This method is simple to apply to 2D critical systems and thus becomes the bread-

and-butter tool to extracting scaling dimensions in the tensor-network RG techniques.

Later, Evenbly and Vidal used the tensor network renormalization (TNR) [18, 16] to

implement local scale transformation that maps a plane to a cylinder [19]; the spectrum

of eigenvalues of a transfer matrix on the cylinder gives scaling dimensions. These

methods provide two main routines to extracting scaling dimensions in tensor-network

RG schemes, while the canonical RG prescription has never been follower up.
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1.5 Outline of this thesis

In this thesis, we provide the missing piece of carrying out, in the general prescription,

the RG in tensor-network language at a general bond dimension. In Chapter 2, we use

the decimation of the 1D Ising model, an exact RG transformation, to demonstrate

the general RG idea and the RG prescription in the conventional Hamiltonian-based

setting, followed by a short review of the general framework of the Hamiltonian-based

RG. We also supplement the 1D Ising example with the decimation of the 2D Ising

model, showing the necessity of approximations in a general RG transformation; the

Migdal-Kadanoff bond moving approximation is introduced. The idea of modern

tensor-network RG idea is demonstrated in the context of the 2D Ising model in

Chapter 3, using the higher-order tensor renormalization group (HOTRG) as the

approximation scheme, which is closely related to the Migdal-Kadanoff bond moving

approximation. After the above review of previous study, the key results of the thesis

are presented in Chapter 4 and Chapter 5. Specifically, in Chapter 4, we define the

canonical RG prescription in tensor-network language first heuristically using the RG

equation of the HOTRG, and then formally in a general way. Two caveats are noted

for any practical implementation of the canonical RG prescription in tensor-network

language. In Chapter 5, we provide a practical numerical realization of the prescription

and the proposed method is benchmarked in the context of the 2D Ising model. We

summarize in Chapter 6.

The success of the RG prescription in the tensor-network language demonstrated

in this thesis offers a better understanding of the nature of these tensor-network RG

techniques as real-space RG transformations. The method might be relevant in three

dimensions, where Gu and Wen’s method is inapplicable and Evenbly and Vidal’s

local-scaling-transformation idea is nontrivial to implement. Pedagogically, it provides

a better way to introduce the full RG idea, because both the RG equation and the

linearized RG equation in tensor-network language have simple and clear pictorial

representation, and more importantly, the results can be improved systematically by

increasing the bond dimension.
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Chapter 2

Real-space Renormalization Group

The renormalization group (RG) is a framework for asking the question: how does

a physical system look like when some of its microscopic information that we are

not interested in is thrown away? This way of thinking is powerful for studying

physical systems where fluctuations in all scales of length are important, including

critical phenomena, elementary particle physics, and turbulent fluid flow. In this

thesis, we focus on the application of the RG framework to critical phenomena, and

the above-mentioned process of throwing away information that we are not interested

in is referred to as coarse graining.

The RG idea can be most easily grasped in the method of real-space RG when

applied to classical lattice spin systems. In this chapter, we will use the simplest possible

example, the decimation of the one-dimensional (1D) Ising model, to demonstrate

the essence of the RG—how is coarse graining defined and what does the RG flows

generated by the coarse graining process tell us about the spin system. We will then

extract the general aspects of the RG from this simple example and summarize the

general framework of the traditional RG prescription. The exposition in this chapter

follow Kardar’s [32] and Cardy’s [7] textbooks, and the review article [15] closely.

For a detailed treatment of momentum-space RG in the context of field theory, see

Kardar’s textbook [32]. Besides, in Shankar’s recent textbook [50], he clarified many

subtle points that tend to confuse people a lot. For the historic background of how

the RG framework was developed, see Wilson’s 1982 Nobel prize lecture [61].
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2.1 A simple example: decimation of the one-dimensional

Ising model

The real-space RG transformation of the Ising model in 1D can be made exact through

decimation. We use this example to introduce some central concepts of the RG

analysis: coarse graining, RG equations, fixed points, and linearized RG equations.

The partition function of the 1D Ising model is

𝑍1D =
∑︁
{𝜎𝑗}

exp

[︃
𝑁∑︁
𝑖=1

H (𝜎𝑖, 𝜎𝑖+1)

]︃
, (2.1)

where 𝜎𝑖 is the spin variable located at the 𝑖-th lattice point, taking values ±1, and

the local interactions in H (we will be sloppy and also call it Hamiltonian or energy

of the system, although they may differ by an overall multiplication constant) involve

the nearest-neighbor term at most,

H (𝜎1, 𝜎2) = 𝑔 +
ℎ

2
(𝜎1 + 𝜎2) +𝐾𝜎1𝜎2. (2.2)

Here, H is parametrized by three coupling constants, 𝑔, ℎ,𝐾, organized according

to different interaction terms 1, 𝜎1, 𝜎2, 𝜎1𝜎2. Physically, ℎ is related to the external

magnetic field and 𝐾 specifies the tendency of how much the nearest-neighbor spins

want to align with each other, while 𝑔 is an overall additional constant that do not

affect the probability distribution of physical configurations but is useful for the RG

analysis as will be seen later.

2.1.1 Coarse graining by decimation

Fig. 2-1 shows how the decimation is defined. It is realized by summing over all

the even-numbered spins in the partition function, followed by a renumbering of the

remaining odd-numbered spins. We denote 𝜎′
𝑖 = 𝜎2𝑖−1, 𝑠𝑖 = 𝜎2𝑖 and trace out all
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Figure 2-1: The decimation of the 1D Ising model, where the linear dimension of
the system is larger by a factor of 𝑏 = 2. The black dots are spin variables. We trace
out all the spins on even sites 𝜎2, 𝜎4, . . . in the partition function; the remaining spins
𝜎1, 𝜎3, . . . are renamed 𝜎′

1, 𝜎
′
2, . . . to become new spin variables at larger scale of length.

𝑠-spins in the partition function in Eq. (2.1) to have

𝑍1D =
∑︁
{𝜎′

𝑗}

∑︁
{𝑠𝑗}

exp

⎡⎣𝑁/2∑︁
𝑖

[︀
H (𝜎′

𝑖, 𝑠𝑖) + H
(︀
𝑠𝑖, 𝜎

′
𝑖+1

)︀]︀⎤⎦
=
∑︁
{𝜎′

𝑗}

𝑁/2∏︁
𝑖

(︃∑︁
𝑠𝑖=±1

exp
[︀
H (𝜎′

𝑖, 𝑠𝑖) + H
(︀
𝑠𝑖, 𝜎

′
𝑖+1

)︀]︀)︃
, (2.3)

from which we can define the term in the large parenthesis as an effective local

interaction

exp [H ′ (𝜎′
1, 𝜎

′
2)] =

∑︁
𝑠=±1

exp [H (𝜎′
1, 𝑠) + H (𝑠, 𝜎′

2)], (2.4)

where the effective local interaction H ′ has the same form as the old one in Eq. (2.2)

but with new coupling constants 𝑔′, ℎ′, 𝐾 ′,

H ′ (𝜎′
1, 𝜎

′
2) = 𝑔′ +

ℎ′

2
(𝜎′

1 + 𝜎′
2) +𝐾 ′𝜎′

1𝜎
′
2. (2.5)

Replace the large parenthesis in Eq. (2.3) with the left-hand side of Eq. (2.4), so we

see that the partition function can be fully described by the coarser 𝜎′-spins,

𝑍1D =
∑︁
{𝜎′

𝑗}

exp

⎡⎣𝑁/2∑︁
𝑖=1

H ′ (︀𝜎′
𝑖, 𝜎

′
𝑖+1

)︀⎤⎦. (2.6)
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Equations (2.2), (2.4) and (2.5) together define the RG equation that maps the old

coupling constants (𝑔, ℎ,𝐾) to the new coupling constants (𝑔′, ℎ′, 𝐾 ′). The explicit

expression of the RG equation is clearer if we work with proxy variables of coupling

constants (𝑥, 𝑦, 𝑧), (𝑥′, 𝑦′, 𝑧′) defined as

𝑥 = 𝑒𝐾 , 𝑦 = 𝑒ℎ, 𝑧 = 𝑒𝑔,

𝑥′ = 𝑒𝐾
′
, 𝑦′ = 𝑒ℎ

′
, 𝑧′ = 𝑒𝑔

′
.

(2.7)

By examining all of the four possible configurations generated by setting 𝜎′
1, 𝜎

′
2 = ±1

in Eq. (2.4), we get four conditions that must be satisfied between (𝑥′, 𝑦′, 𝑧′) and

(𝑥, 𝑦, 𝑧),

for 𝜎′
1 = 1, 𝜎′

2 = 1 : 𝑥′𝑦′𝑧′ = 𝑧2𝑦(𝑥2𝑦 + 𝑥−2𝑦−1),

for 𝜎′
1 = −1, 𝜎′

2 = −1 : 𝑥′(𝑦′)−1𝑧′ = 𝑧2𝑦−1(𝑥−2𝑦 + 𝑥2𝑦−1),

for 𝜎′
1 = 1, 𝜎′

2 = −1 : (𝑥′)−1𝑧′ = 𝑧2(𝑦 + 𝑦−1),

for 𝜎′
1 = −1, 𝜎′

2 = 1 : (𝑥′)−1𝑧′ = 𝑧2(𝑦 + 𝑦−1).

(2.8)

Since the last two equations are identical, we can solve for three renormalized 𝑥′, 𝑦′, 𝑧′

in terms of the old 𝑥, 𝑦, 𝑧 using the remaining three equations,

(𝑥′)4 = (𝑥2𝑦 + 𝑥−2𝑦−1)(𝑥−2𝑦 + 𝑥2𝑦−1) (𝑦 + 𝑦−1)
−2
,

(𝑦′)2 = 𝑦2(𝑥2𝑦 + 𝑥−2𝑦−1) (𝑥−2𝑦 + 𝑥2𝑦−1)
−1
,

(𝑧′)4 = 𝑧8(𝑥2𝑦 + 𝑥−2𝑦−1)(𝑥−2𝑦 + 𝑥2𝑦−1)(𝑦 + 𝑦−1)2.

(2.9)

The RG equation in Eq. (2.9) is the key result of the above coarse-graining process

realized by decimation. We can transform all the proxy variables in Eq. (2.9) back

to the coupling constants according to Eq. (2.7) to get a map (𝑔, ℎ,𝐾) → (𝑔′, ℎ′, 𝐾 ′),

but the resultant expression of the RG equation would be very cumbersome and does

not bring new insights; we will work with the RG equation in the form of Eq. (2.9)

from now on.

Let us pause at this point and discuss the physical picture of the above analysis.

During the decimation of the even-numbered spins in Fig. 2-1, one coarser spin 𝜎′
𝑖
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represents two original spins 𝜎2𝑖−1, 𝜎2𝑖. Fix the index to 𝑖 = 1, there are four original

configurations (𝜎1, 𝜎2) = (+1,+1), (+1,−1), (−1,+1), (−1,−1) corresponding to two

coarser configurations 𝜎′
1 = +1,−1. The decimation relates the coarser configurations

to the original ones according to 𝜎′
1 = +1 ⇐⇒ (𝜎1, 𝜎2) = (+1,+1), (+1,−1) and

𝜎′
1 = −1 ⇐⇒ (𝜎1, 𝜎2) = (−1,+1), (−1,−1). In terms of coarser spin 𝜎′

𝑖, the effective

local interaction ℋ′ is parametrized with new coupling constants 𝑔′, ℎ′, 𝐾 ′ as are

defined in Eq. (2.5) and their relation to old ones is specified in Eq. (2.4), with the

explicit form shown in the RG equation in Eq. (2.9). The RG equation defined by a

given coarse graining process tells us how the physics at larger scales emerges from

lattice-scale physics.

Mathematically, the process from microscopic descriptions to macroscopic observa-

tions is represented by an RG flow in the coupling-constant space with coordinates

(𝑔, ℎ,𝐾), or equivalently, (𝑥, 𝑦, 𝑧), by applying the RG equation iteratively. The

large-length-scale physics in thermodynamic limit is thus described by various fixed

points of the RG equation, where the coupling constants stay the same under coarse

graining.

2.1.2 Fixed points and linearized RG equations

Fixed points Different fixed points of the RG equation corresponds to different

large-length-scale physics or phases of matter. Let us discuss the fixed points of the

RG equation in Eq. (2.9). First notice that 𝑥′, 𝑦′ only depends on 𝑥, 𝑦 but not 𝑧, which

is reasonable from the physical meaning of the coupling constants; 𝑧 is a proxy variable

of 𝑔, an overall additional constant, which should not affect any nontrivial coupling

like the external magnetic field or nearest-neighbor interaction. Next, for simplicity,

let us focus on the 𝑦 = 1 subspace, corresponding to zero magnetic field ℎ = 0 (for

ℎ ̸= 0 see Kardar’s book [32]). The second expression in Eq. (2.9) tells us the coarser

𝑦′ = 1 = 𝑦; the algebra works out correctly since the energy of the old system is

invariable under spin-flip transformation 𝜎𝑖 → −𝜎𝑖, and the RG transformation should

not generate terms that break this symmetry. After the restriction 𝑦 = 1, the first
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expression in Eq. (2.9) becomes

(𝑥′)2 =
𝑥2 + 𝑥−2

2
or 𝑒2𝐾

′
= cosh 2𝐾, (2.10a)

which can be written as

tanh𝐾 ′ = tanh2𝐾. (2.10b)

This equation has two fixed points:

high-temperature fixed point: tanh𝐾* = 0, 𝐾* = 0, 𝑇 * = ∞,

low-temperature fixed point: tanh𝐾* = 1, 𝐾* = ∞, 𝑇 * = 0,
(2.11)

where 𝑇 ∝ 1/𝐾 is the temperature.

Linearized RG equations The behavior of the RG equation around a given fixed

point reveals the property of the phase of the matter corresponding to this fixed point.

When the fixed point corresponds to a critical system, the linearized RG equation

around this fixed point tells us how various physical observables, like the correlation

length, diverge, but the linearized RG equation itself is well-behaved without any

divergence. Wilson’s paper [59] used an analogy to explain how a continuous RG

equation near a critical fixed point gives rise to divergence behavior of various physical

observables. Later in Section 2.3.3, we will demonstrate how to extract the divergence

behavior of the correlation length of the 2D Ising model at criticality from the linearized

RG equation. Here, although the 1D Ising model does not have an interesting critical

fixed point, we can still use it to demonstrate how to linearize the RG equation around

a fixed point.

Let us focus on the high-temperature fixed point, where𝐾* = ℎ* = 0 or 𝑥* = 𝑦* = 1.

Plug these values into the last express in Eq. (2.9), we have 𝑧* = 1/2 or 𝑔* = log(1/2).
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Consider small perturbations around this fixed point and set

𝑔 = log(1/2) + 𝛿𝑔, ℎ = 0 + 𝛿ℎ, 𝐾 = 0 + 𝛿𝐾. (2.12)

After the decimation, the coarse 𝑔′, ℎ′, 𝐾 ′ should also be close to the fixed point,

𝑔′ = log(1/2) + 𝛿𝑔′, ℎ′ = 0 + 𝛿ℎ′, 𝐾 ′ = 0 + 𝛿𝐾 ′. (2.13)

Use Eq. (2.7) to convert 𝑔, ℎ,𝐾 in Eq. (2.12) to 𝑥, 𝑦, 𝑧, plug them into the right hand

side of Eq. (2.9), and only keep the linear terms. A straightforward but tedious algebra

gives

𝛿𝑔′ = 2× 𝛿𝑔 + higher-order terms,

𝛿ℎ′ = 1× 𝛿ℎ+ higher-order terms,

𝛿𝐾 ′ = 0× 𝛿𝐾 + higher-order terms.

(2.14a)

It can also be put into a matrix form,⎛⎜⎜⎜⎝
𝛿𝑔′

𝛿ℎ′

𝛿𝐾 ′

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
2 0 0

0 1 0

0 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝛿𝑔

𝛿ℎ

𝛿𝐾

⎞⎟⎟⎟⎠ . (2.14b)

Equation (2.14) is the linearized RG equation near the high-temperature fixed point of

the 1D Ising model; it can be represented by a 3-by-3 matrix, already in its diagonal

form with eigenvalues 2, 1, 0 for 𝛿𝑔, 𝛿ℎ, 𝛿𝐾 respectively. In general, it is the eigenvalues

of a linearized RG equation that are related directly with the divergence behavior of

physical observables in a critical system (not for this particular example, of course,

since the system is not at criticality).
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2.2 General framework

It is a nice point to generalize the RG analysis of the 1D Ising model and discuss

the general framework of the traditional Hamiltonian-based RG, which will also be

referred to as the canonical RG prescription in Hamiltonian space in this thesis. The

discussion here follows Refs [7, 15] closely.

Let us say we have a classical system with spin variables 𝜎 ∈ {+1,−1} on a lattice.

The Hamiltonian (or energy) of the system is local and can be parameterized by a

set of coupling constants K = {𝐾𝑗}, each of which couples to a possible short-ranged

interaction term 𝑠𝑗(r),

ℋ =
∑︁
r

∑︁
𝑗

𝐾𝑗𝑠𝑗(r). (2.15)

For example, if 𝐾1 is the magnetic field, 𝑠1(r) = 𝜎(r) is the spin variable at lattice

point r; if 𝐾2 is the nearest neighbor interaction along 𝑥 direction, 𝑠2(r) = 𝜎(r)𝜎(r+

𝑎ê𝑥), where ê𝑥 is the unit vector along 𝑥 direction and 𝑎 is the lattice constant. A

conventional RG transformation maps the old Hamiltonian ℋ to a new one ℋ′ with

the same form as Eq. (2.15) but characterized by a set of new coupling constants

K′ = {𝐾 ′
𝑗}. The map ℋ RG−−→ ℋ′ is then parametrized explicitly as the transformation

from the old coupling constants to the new ones,

K′ = 𝒯 old (K) . (2.16)

The RG transformation is constructed in such a way as to keep the partition function

of the system invariant in principle, or to keep the change of the partition function

as small as possible in practice. Furthermore, the RG equation should exhibit a

fixed-point Hamiltonian ℋ* parameterized by coupling constants K*, such that K*

remains unchanged under the RG transformation,

K* = 𝒯 old (K*) . (2.17)
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The linearized RG equation around K* tells us the behavior of the RG equation in

the vicinity of this fixed point. It can be determined by following the procedure below.

We study how the points near K* change under the RG transformation. To this end,

we plug K = K* + 𝛿K into the RG equation in Eq. (2.16). The coarser coupling

constants are K′ = K* + 𝛿K′ by continuity of an RG transformation. The linearized

RG equation around K* is a matrix ℛold telling us how 𝛿K′ is related to 𝛿K,

𝛿𝐾 ′
𝑖 =

∑︁
𝑗

ℛold
𝑖𝑗 𝛿𝐾𝑗. (2.18)

Since the eigenvalues of the linearized RG equation are related to physical observables,

we usually want to diagonalize ℛold. Let us say it has right and left eigenvectors

{𝜓𝛼}, {𝜑𝛼} with the same set of eigenvalues {𝜆𝛼},

∑︁
𝑗

ℛ𝑜𝑙𝑑
𝑖𝑗 𝜓

𝛼
𝑗 = 𝜆𝛼𝜓𝛼

𝑖 and
∑︁
𝑖

𝜑𝛼
𝑖 ℛ𝑜𝑙𝑑

𝑖𝑗 = 𝜆𝛼𝜑𝛼
𝑗 . (2.19)

The left eigenvector 𝜑𝛼 tells us a certain linear combination of 𝛿𝐾𝑖 like

ℎ𝛼 =
∑︁
𝑖

𝜑𝛼
𝑖 𝛿𝐾𝑖, (2.20)

transforms in a simple way under RG; we usually call ℎ𝛼 scaling fields. Similarly, a

certain linear combination of interaction terms 𝑠𝑗(r) according to the right eigenvector

𝜓𝛼 are known as scaling operators

𝑜𝛼(r) =
∑︁
𝑗

𝑠𝑗(r)𝜓
𝛼
𝑗 . (2.21)

The RG transformation with rescaling factor 𝑏 for a system in dimension 𝑑 is represented

by a diagonal matrix in the basis specified by the scaling fields and the scaling operators

(ℎ𝛼)′ = 𝑏𝑑−𝑥𝛼ℎ𝛼 and (𝑜𝛼)′ = 𝑏𝑥𝛼𝑜𝛼, (2.22)

where 𝑥𝛼 are the scaling dimensions of the scaling operators 𝑜𝛼(r). Using Eqs (2.18)
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to (2.20) and (2.22), we can find the relation between the scaling dimensions {𝑥𝛼}
and the eigenvalues {𝜆𝛼} of the linearized RG equation,

𝑏𝑑−𝑥𝛼 = 𝜆𝛼. (2.23)

The scaling dimension 𝑥𝛼 of the scaling operator 𝑜𝛼 tells us the divergent behavior of

the physical observables related to this operator.

In summary, in the conventional approach, we first find a fixed point of the RG

equation and determine the linearized RG equation ℛold at this fixed point. Then,

we find the eigenvalues 𝜆𝛼 of ℛold and calculate the scaling dimensions according to

Eq. (2.23). Various critical exponents can be calculated from these scaling dimensions

if desired.

2.3 Decimation of the two-dimensional Ising model

It is very unusual that the decimation of the 1D Ising model is exact. In this section, we

use decimation of the two-dimensional (2D) Ising model to demonstrate the difficulty

of the real-space RG encountered in higher dimensions and introduce a simple trick to

deal with this difficulty.

2.3.1 Decimation in 𝑑 = 2 generates new interactions

Consider the 2D Ising model on the square lattice, initially with only nearest-neighbor

interaction. The decimation is performed as per Fig. 2-2. We concentrate on the five

spins 𝜎0, 𝜎1, 𝜎2, 𝜎3, 𝜎4 shown in the figure, where 𝜎0 is decimated and mediates the

effective interactions between 𝜎1, 𝜎2, 𝜎3, 𝜎4. We are tempted to assume that there is

still only nearest-neighbor terms in the effective interactions due to our success in

𝑑 = 1,

∑︁
𝜎0=±1

𝑒𝐾𝜎0(𝜎1+𝜎2+𝜎3+𝜎4) = 𝑒
1
2
𝐾′(𝜎1𝜎2+𝜎2𝜎3+𝜎3𝜎4+𝜎4𝜎1)𝑒𝑔

′
, (2.24)
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where the 1/2 factor in front of 𝐾 ′ is because 𝜎0 only mediates half of the interaction

between, say, 𝜎1 and 𝜎2, with the other half contributed by the decimation of the spin

𝜎′ inside the dashed lines shown in the figure. However, we can see that Eq. (2.24)

cannot be true based on a symmetry argument. The left-hand side of Eq. (2.24) is

2 cosh[𝐾(𝜎1+𝜎2+𝜎3+𝜎4)], where four spins appear in a symmetric way; it is invariant

under the permutation 𝜎1 ↔ 𝜎2. The right-hand side of Eq. (2.24) does not respect

this symmetry. Therefore, second-neighbor terms like 𝐾2𝜎1𝜎3 must arise. It turns

out that there is also a four-spin term 𝐾4𝜎1𝜎2𝜎3𝜎4. As a result, we should change

Eq. (2.24) to become

∑︁
𝜎0=±1

𝑒𝐾𝜎0(𝜎1+𝜎2+𝜎3+𝜎4) = 𝑒
1
2
𝐾′(𝜎1𝜎2+𝜎2𝜎3+𝜎3𝜎4+𝜎4𝜎1)𝑒𝐾

′
2(𝜎1𝜎3+𝜎2𝜎4)+𝐾′

4𝜎1𝜎2𝜎3𝜎4𝑒𝑔
′
. (2.25)

By examining any three independent spin configurations not related by the overall

spin-flip transformation, we can solve for the coarser coupling constants in terms of

σ1

σ2

σ3

σ4

σ0

σ′

σ′′

Figure 2-2: The decimation of the 2D Ising model. The black dots are spin variables.
The spins that are marked with a cross sign like 𝜎0 are decimated, which will mediate
new interactions including second-neighbor terms like 𝐾 ′

2𝜎1𝜎3 and a four-spin term
𝐾 ′

4𝜎1𝜎2𝜎3𝜎4. The lattice constant is 𝑏 =
√
2 times as the original one.
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the original ones,

𝐾 ′ =
1

4
ln cosh 4𝐾, (2.26a)

𝐾 ′
2 =

1

8
ln cosh 4𝐾, (2.26b)

𝐾 ′
4 =

1

8
ln cosh 4𝐾 − 1

2
ln cosh 2𝐾. (2.26c)

Although we start with only the nearest-neighbor interaction, the decimation in 𝑑 = 2

generates extra second-neighbor and four-spin terms, making subsequent decimation

steps less trivial. To see the problem these newly-generated interactions cause in

subsequent coarse graining, imagine that we rotate and rescale the system after the

above decimation so it looks the same as before, and then repeat the decimation. Let

us examine Fig. 2-2 again, but this time with interactions 𝐾 ′, 𝐾 ′
2, 𝐾

′
4 among the spins

in a plaquette like the one containing 𝜎1, 𝜎′, 𝜎2, 𝜎0. During this second coarse-graining

step, we can no longer treat the local patch containing 𝜎0, 𝜎1, 𝜎2, 𝜎3, 𝜎4 separately from

the rest system due to the second-neighbor interaction 𝐾 ′
2 between 𝜎0 and 𝜎′. Instead,

the sum over 𝜎0 is related to the sum over 𝜎′, which is further related to more spins

outside like 𝜎′′. We have to make approximations to make the subsequent decimation

steps well-defined.

2.3.2 The Migdal-Kadanoff bond moving approximation

One way to keep the interactions from growing is to move the problematic interactions

to non-problematic ones by hand, often known as the Migdal-Kadanoff bond moving

approximation [44, 43, 30], before the decimation. Consider the same lattice as the

one in Fig. 2-2, but this time, for an RG increasing the lattice distance by a factor of

𝑏 = 2 instead of 𝑏 =
√
2. As is shown in Fig. 2-3, the bonds original at the dashed

lines are moved to the upper or right bonds, enhancing the interactions there. Then,

the unwanted spins are summed over. Since the spins like 𝜎2, 𝜎4 are decoupled from

other spins, the paths of generating longer interactions are cut off; the decimation

thus only generated nearest-neighbor interactions at most, just like the 𝑑 = 1 cased
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shown in Fig. 2-1. After the bond moving trick, the nearest-neighbor interaction is

increased from 𝐾 to 2𝐾. After the decimation, the coarser interaction 𝐾 ′ is given by

Eq. (2.10),

tanh𝐾 ′ = tanh2(2×𝐾) =
4 tanh2𝐾

(1 + tanh2𝐾)2
. (2.27)

This trick of moving the bonds before decimation can be easily generated to

higher dimensions. For a hypercubic lattice in 𝑑-dimensions, the bonds retained are

strengthened by a factor of 2𝑑−1, 𝐾 → 2𝑑−1𝐾; the subsequent decimation will then

give the RG equation,

tanh𝐾 ′ = tanh2(2𝑑−1𝐾). (2.28)

However, the approximation errors during the Migdal-Kadanoff bond moving step are

difficult to control; the reliability of its results is thus questionable. Its performance

σ1

σ2

σ3

σ4

σ0

σ5σ7

σ1

σ2

σ3

σ4

σ0

σ5σ7

(a) bonds moving (b) decimation

Figure 2-3: The bond moving trick for the Migdal-Kadanoff RG with 𝑑 = 2 and 𝑏 = 2.
(a) Move the bonds not connected to the spins that will be retained after decimation.
(b) Perform the decimation. Summing over spins like 𝜎2, 𝜎4 will only contribute to
the overall multiplicative constant before the partition function, while summing over
spins like 𝜎0 will mediate interactions between 𝜎1, 𝜎3 in a same way as the 𝑑 = 1 case
shown in Fig. 2-1.
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Figure 2-4: The roots of this function are the fixed points of Eq. (2.27).

on the Ising models in 𝑑 = 1, 2, 3 indicates the results become worse in higher

dimensions [32].

2.3.3 The linearized RG equation and divergence of the corre-

lation length

To find the fixed points of the RG equation (2.27), we plot the function 𝑦 =

𝑓(tanh𝐾) = 4 tanh2𝐾/(1 + tanh2𝐾)2 − tanh𝐾 from tanh𝐾 = 0 to 1, and the

roots of the function are fixed points. As is shown in Fig 2-4, besides high-tempearture

fixed point tanh𝐾* = 0 and low-temperature fixed point tanh𝐾* = 1, the RG equa-

tion in Eq. (2.27) also has a non-trivial fixed point tanh𝐾* ≈ 0.29560 or 𝐾* ≈ 0.305,

compared with the exact critical value 𝐾𝑐 ≈ 0.441. Since the RG equation (2.27) only

involves one coupling constant, the linearized RG equation is simply the derivative of

𝐾 ′ with respect to 𝐾 evaluated at 𝐾*,

𝛿𝐾 ′ =
𝜕𝐾 ′

𝜕𝐾

⃒⃒⃒⃒
𝐾*
𝛿𝐾 = 2 tanh(4𝐾*)𝛿𝐾. (2.29)

At the critical fixed point, 𝐾* = 0.305, the linearized RG equation (2.29) tells us

𝛿𝐾 ′ = 1.6786× 𝛿𝐾, (2.30)
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which pushes the small perturbation away from the fixed point since 1.6786 > 1.

Divergence of dimensionless correlation length Let us denote 𝜉(𝐾) as the

dimensionless correlation length measured in lattice units; the physical correlation

length is 𝜉(𝐾) multiplied by the original lattice constant. After the above 𝑏 = 2

decimation, the coarser dimensionless correlation length

𝜉(𝐾 ′) =
1

2
𝜉(𝐾), (2.31)

because the coarser lattice constant is twice as big as the old one, while the physical

correlation length is the same after the coarse graining. Right at the fixed point,

𝐾 ′ = 𝐾 = 𝐾*, so according to Eq. (2.31), 𝜉(𝐾*) = 0 or ∞. The critical fixed point

is featured by a divergent correlation length, following a power law as a function of

𝛿𝐾 = 𝐾 −𝐾*,

𝜉(𝛿𝐾) = 𝑐0|𝛿𝐾|−𝜈 , (2.32)

where 𝜈 > 0 is known as a critical exponent, describing the divergent behavior of a

physical observable. Use Eq. (2.32) in Eq. (2.31) and use the relation between 𝛿𝐾 ′

and 𝛿𝐾 in Eq. (2.29) to have

|𝛿𝐾 ′|−𝜈 =
1

2
|𝛿𝐾|−𝜈 ,

Eq. (2.30)
=⇒ 1.6786−𝜈 |𝛿𝐾|−𝜈 =

1

2
|𝛿𝐾|−𝜈 , (2.33)

from which we have

𝜈 =
ln(2)

ln(1.6786)
= 1.34. (2.34)

The exact value given by Onsager’s solution is 𝜈 = 1. We use this example to

demonstrate a general principle: various critical exponents are related directly with

the eigenvalues of the linearized RG equation around a critical fixed point.
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Chapter 3

Tensor-network Renormalization

Group

The Migdal-Kadanoff bond moving approximation discussed in Section 2.3.2 is un-

controllable. One way to proceed is to construct a perturbative expansion like

Niemeijer-van Leeuwen cumulant approximation or Wilson’s 𝜖 expansion, discussed in

many textbooks. Here we want to introduce a modern RG method, tensor-network

RG; they are versatile numerical schemes whose approximations are controlled by an

integer, 𝜒, called the bond dimension.

3.1 From a lattice with statistical variables to a

tensor-network model

Tensor-network RG is to apply the RG idea to a set of models called tensor-network

models. It can be shown that the partition function of a classical statistical model

or the space-time path integral of a quantum spin system can be rewritten as tensor-

network models [24, 38]. In this chapter, we use the square lattice two-dimensional

Ising model as a concrete example to demonstrate how to find a tensor-network

representation of a partition function. There are at least two ways to construct the

tensor-network model. The method introduced by Hauru, Delcamp and Mizera [26] is
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more general and can be trivially adapted to apply to the 3D classical Ising model [63]

and other models like the 𝜑4 theory in 2D [13]. However, we will use the other method

introduced in Refs [18, 38], which is more straightforward and whose physical meaning

is more transparent.

Consider classical spin variables living on a square lattice shown in Fig. 3-1. The

square lattice is sketched with blue dashed lines and the blue dots are where spin

variables sit. The partition function is

𝑍 =
∑︁
{𝜎(r)}

𝑒𝐾
∑︀

⟨𝑖,𝑗⟩ 𝜎𝑖𝜎𝑗 , (3.1)

where 𝜎𝑖 is the shorthand for the spin variable 𝜎(r𝑖) located at lattice point r𝑖 and

can take values ±1; 𝐾 = 𝐽/𝑘𝐵𝑇 , where 𝐽 > 0 is the ferromagnetic interaction and 𝑇

is temperature. In this thesis, we measure temperature in units of 𝐽/𝑘𝐵 so it becomes

a dimensionless number.

Figure 3-1: Map spin variables to tensors. The blue dots are where the spin variables
locate, forming a square lattice slanted by 45∘. The larger green circles are tensors
encoding the probability distribution of the configurations of the four surrounding spin
variables sitting on four legs of the tensor; the tensors form another square lattice.

Now, imagine dividing this region into square blocks using the black solid lines in

Fig. 3-1, such that each side of a black square holds a spin variable. Finally, put a
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four-leg tensor (green circles with four green legs) at the center of each black square,

with its four legs connected with the four spin variables on the sides of the black

square. The graph we get in green is the tensor network, where the four-leg tensors

connected with each other to form a new square lattice. To determine the value of the

four-leg tensors, we simply divide the summation on the exponential in Eq. (3.1) into

groups where pairs of spin variables are brought together if they belong to the same

black square. We define the local Boltzmann weight for pairs of spins on the same

black square as a 4-leg tensor

𝐴𝜎𝑖𝜎𝑗𝜎𝑘𝜎𝑙
≡ 𝑒𝐾(𝜎𝑖𝜎𝑗+𝜎𝑗𝜎𝑘+𝜎𝑘𝜎𝑙+𝜎𝑙𝜎𝑖) = A

σi

σj
σk

σl

. (3.2)

Each index of this tensor can take two values ±1 and we say the bond dimension of

a leg of this tensor is 𝜒 = 2. It is now possible to rewrite the partition function of

the 2D Ising model in Eq. (3.1) as the tensor product of 𝑁 copies of 𝐴, with all their

indices summed over (Fig. 3-1)

𝑍 =
∑︁
{𝜎(r)}

𝑁⨂︁
𝑥=1

𝐴𝜎𝑖(𝑥)𝜎𝑗(𝑥)𝜎𝑘(𝑥)𝜎𝑙(𝑥)
≡ tTr

(︃
𝑁⨂︁

𝑥=1

𝐴

)︃
, (3.3)

where the last equal sign defines the tTr symbol. The index 𝑥 is to distinguish different

copies of 𝐴.

As a concrete example, for a finite system in Fig. 3-1 with periodic boundary

condition, the total 4 × 8 = 32 spin variables are mapped into 4 × 4 = 16 tensors

𝐴. If we adopt the summation convention that a leg is summed over whenever it is

shared by two tensors, the partition function in Eq. (3.1) will have a simple pictorial

description

𝑍4×4 = . (3.4)
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Eq. (3.4) above provides a tensor network representation of the partition function

in Eq. (3.1). It is the starting point of all the tensor-network renormalization group

methods. Notice that the number of tensors in the tensor network is half of the number

of spin variables. In addition, if the lattice constant of the original spin system is

𝑎/
√
2 (that is, the length of a side of a blue dashed square in Fig. 3-1), the distance of

the nearest two tensors in the resultant tensor network is 𝑎/
√
2×

√
2 = 𝑎. Compared

with the original picture of spin variables, the tensor-network picture encodes more

information about the probability distribution of local spin configurations into a tensor,

the legs of which represent the original spin variables.

3.2 Coarse graining of a tensor-network model

The coarse graining of a tensor-network model is similar to the conventional block-spin

methods. The transformation is usually defined by grouping several old variables to

form a new variable. The system consisting of the new variables will have a different

length scale (in particular, a different lattice constant) but its partition function

should be the same as (or a good approximation of) the partition function of the

system consisting of the old variables. Interestingly, the coarse graining in the tensor

representation is easier to define and more transparent. Let’s focus on a concrete

example whose partition function is defined in Eq. (3.4).

3.2.1 A naïve approach

The system originally consists of sixteen 𝐴 tensors. The simplest way to define an RG

transformation is to block a square of four tensors by contracting legs between them

and group every two legs on the same side. Call the coarser tensor 𝐴𝑐,

Ac ≡
A

. (3.5)
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Ac

Ac Ac

Ac

RG−−→

A

Figure 3-2: The physical picture of the block tensor transformation 𝐴 → 𝐴𝑐 in
Eq. (3.5). Part of the spins shared by two tensors 𝐴 are summed over according to
Eq. (3.5). The black squares are larger after the decimation.

Then, the partition function can be fully described by copies of the coarser tensor 𝐴𝑐

after the coarse graining

𝑍4×4 =
RG
=

Ac Ac

Ac Ac

, (3.6)

so the coarse graining defined by the above block-tensor transformation is exact.

We can draw the original spin variables explicitly in the tensor-network figure to

see what is happening to the spin variables under the block-tensor transformation.

To avoid too many lines clustering together, we only keep spin variables, tensors and

black solid squares in Fig. 3-1. The big picture for the block-tensor transformation

is shown schematically in Fig. 3-2. The block-spin transformation resembles the

conventional decimation. The contracting of the tensor network on the right-hand side

of Eq. (3.5) represents the decimation of spin variables sitting on the legs contracted.

We end up with four bigger black squares, each with a 𝐴𝑐 in the middle and two spin

variables sitting on any of its four sides. The length scale is multiplied by 𝑏 = 2. This

block-tensor transformation in Eq. (3.5) then defines a map from the old tensor 𝐴 to
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the coarser tensor 𝐴𝑐,

A
coarse−−−−→

graining
Ac . (3.7)

Since the tensors 𝐴,𝐴𝑐 encode the probability distributions 𝜇, 𝜇′ of the original and

coarser spin configurations respectively, equation (3.7) provides a first example of the

map 𝑇 : 𝜇 → 𝜇′ in Fig. 1-1. This coarse graining is exact, but the bond dimension

grows fast, which is expected based on the example of the decimation of the 2D Ising

model shown in Section 2.3. The initial tensor has bond dimension 𝜒 = 2. After 𝑛

RG transformations, the bond dimension grows to 22
𝑛 . It can be easily shown that

the computation cost will grow exponentially in the original lattice size. A clever

approximation technique is necessary to prevent the bond dimension from growing as

the RG transformation goes.

In the conventional RG approaches, we avoid generating a Hamiltonian with

infinitely many interaction terms by only keeping a finite number of the couplings that

are important quantitatively [61, 58]. This statement was confirmed by Wilson in his

1975 numerical RG calculations of the 2D Ising model using Kadanoff’s decimation

approach [60]. This observation suggests that we should be able to find a good

approximation of a local patch of the tensors, such as the square of four 𝐴 tensors in

Eq. (3.5). We will introduce such an approximation scheme in the next subsection.

3.2.2 An approximation scheme: the higher-order tensor renor-

malization group (HOTRG)

The higher-order tensor renormalization group (HOTRG) [63] is the earliest tensor-

network RG technique that can be easily applied to three-dimensional classical statis-

tical models. It is simple to understand, easy to implement, and straightforward for

the RG prescription in tensor-network language, which is the main purpose of this

thesis.
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As has been explained at the end of the previous subsection, we want to approximate

the square of four 𝐴 tensors on the right-hand side of Eq. (3.5) to prevent the growing of

the bond dimensions. In the original treatment of the HOTRG [63], the approximation

was explained in terms of higher-order singular value decompositions [10, 11, 12].

However, we will present the HOTRG from a different perspective inspired by a

broader class of local approximation methods called projective truncations [18]. Let’s

imagine we first contract two 𝐴 tensors on the left in Eq. (3.5). A projection operator

𝑃 = 𝑤𝑤† is inserted and acts on, say, two left legs whose bond dimensions are both

assumed to be 𝜒, and we hope this patch of two 𝐴 tensors after projection gives a

good approximation to the original patch,

A

Aχ

χ
w w†

χ

χ
χ̃

≈
A

A

χ

χ
, (3.8)

where 𝑤 is an isometric tensor to be determined and 𝑤† its hermitian conjugate. The

isometry 𝑤 is a linear mapping: V�̃� → V𝜒 ⊗ V𝜒, where V𝜒 denotes a 𝜒-dimensional

vector space, and the isometry satisfies 𝑤†𝑤 = 1. In a more physicist-oriented

language, the isometry 𝑤 is nothing but a collection of �̃� orthonormal ket vectors

with dimensionality 𝜒2 in a given representation. We draw it as a gray triangle to

mimic Dirac’s bra-ket notation. If we fix the leg connecting the vertex angle of the

gray triangle to be 𝑘-th index, we get a ket vector |𝑤𝑘⟩. The projection operator is

𝑃 =
∑︀�̃�

𝑘=1 |𝑤𝑘⟩⟨𝑤𝑘|. If �̃� = 𝜒2, we have a complete orthonormal set and the projection

operator becomes the identity operator. We will see later that to prevent the growing

of the bond dimensions, we should choose �̃� ≤ 𝜒. We usually choose �̃� = 𝜒 = 𝜒max in

this thesis, so the bond dimension remains the same value 𝜒max after coarse graining

(more precisely, in first few RG steps, the bond dimension will grow from 2 to 𝜒max

for case of the 2D Ising model).

Now, suppose we have found the isometry 𝑤 that gives a good approximation in

Eq. (3.8), then we use this approximation to replace all pairs of 𝐴 tensors in the tensor
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network representation of the partition function in Eq. (3.4) to get

𝑍4×4

(3.8)≈

A

=

A′

, (3.9)

where during the second step, we contract two 𝐴 tensors and 𝑤,𝑤† in the dashed

circle to get a coarser tensor 𝐴′,

A′ ≡
A

A

ww†

. (3.10)

Notice in the approximation step in Eq. (3.9), we use the periodic boundary condition

to move the two leftmost 𝑤 tensors to the right. Equation (3.10) defines a coarse

graining 𝐴 → 𝐴′ in the vertical direction. Apply a similar projective truncation

on two 𝐴′ tensors put side by side using another isometry 𝑣, we will get a coarse

graining 𝐴′ → 𝐴𝑐 in the horizontal direction. The total coarse graining 𝐴→ 𝐴𝑐 is a

combination of 𝐴→ 𝐴′, 𝐴′ → 𝐴𝑐,

Ac =
A

A

ww†
A

A

ww†

v†

v

. (3.11)
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The legs of tensor 𝐴𝑐 have the bond dimensions �̃� = 𝜒 = 𝜒max, so the HOTRG

implements an approximate RG transformation which prevents the bond dimensions

from growing. The computational costs of the tensor contraction in Eq. (3.11) are

𝑂(𝜒7
max).

Determining the isometric tensors The final question is how to determine the

isometry 𝑤, so that we have a good approximation in Eq. (3.8). The approximation

error is usually quantified by the Frobenius norm of the difference of two tensors. To

simplify the notation, we combine the two left legs of the patch of two 𝐴 tensors on

right-hand side of Eq. (3.8) as one group, and combine its remaining four legs as the

other group; treat the patch as a matrix 𝑀 ,

𝑀 = M

χ

χ

≡
A

A

χ

χ
. (3.12)

The square of the approximation error 𝜖 of Eq. (3.8) is

𝜖2 =
⃦⃦
𝑀 − 𝑤𝑤†𝑀

⃦⃦2
= Tr

(︁(︀
𝑀 − 𝑤𝑤†𝑀

)︀ (︀
𝑀 − 𝑤𝑤†𝑀

)︀†)︁
= Tr

(︀
𝑀𝑀 †)︀− Tr

(︀
𝑤†𝑀𝑀 †𝑤

)︀
, (3.13a)

where in the last step, we expand the two parentheses, apply the cyclic property of

trace, and use the property of an isometry, 𝑤†𝑤 = 1. Notice the first term Tr
(︀
𝑀𝑀 †)︀

is a constant since matrix 𝑀 is given. The result can be put pictorially as

𝜖2 = Const. − M
w†

M†
w
. (3.13b)

Since the square of any number is non-negative, we have Tr
(︀
𝑤†𝑀𝑀 †𝑤

)︀
≤ Tr

(︀
𝑀𝑀 †)︀.

It follows that 𝜖 in Eq. (3.13) is minimized when Tr
(︀
𝑤†𝑀𝑀 †𝑤

)︀
is maximized. This is a
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well-known optimization problem that can be converted into an eigenvalue problem [21].

In Appendix A, we will use the method of Lagrangian multiplier to prove this statement.

The optimal isometry 𝑤 is a collection of �̃� eigenvectors of the positive semi-definite

matrix 𝑀𝑀 † corresponding to the first �̃� largest eigenvalues. For example, the ket

vector |𝑤𝑘⟩ corresponding to the column vector we get when fixing the leg connecting

the vertex angle of 𝑤 (see, for example, the figure in Eq. (3.13b)) should satisfy

𝑀𝑀 †|𝑤𝑘⟩ = 𝜆𝑘|𝑤𝑘⟩, (3.14)

where 𝜆𝑘 is the 𝑘-th largest eigenvalues of 𝑀𝑀 †. The square of the approximation

error 𝜖2 in Eq. (3.13) is the sum of 𝜒2 − �̃� smallest eigenvalues we throw away during

the approximation.

3.3 Systematic improvement by including more in-

teractions

From the way how the isometric tensors are determined discussed in Section 3.2.2,

we know that the approximation error 𝜖2 becomes smaller if more eigenvectors of

𝑀𝑀 † are kept, corresponding to larger bond dimension �̃�. Therefore, we expect

that increasing the bond dimension �̃� can improve the final results of the HOTRG

systematically. This is very reasonable. Recall the physical picture of the block-tensor

transformation in Fig. 3-2 and the meaning of an isometric tensor described below

Eq. (3.8), larger bond dimension �̃� means keeping more spin configurations, which in

turn indicates that the 4-leg coarser tensor 𝐴𝑐 in Eq. (3.11) encodes more kinds of

local interactions.

We demonstrate this claim numerically by comparing the free energy of the 2D

Ising model estimated using the HOTRG with Onsager’s exact result. We start with

the initial tensor 𝐴(0) ≡ 𝐴 shown in Eq. (3.2), which corresponds to two spin variables.

By applying the RG equation of the HOTRG shown in Eq. (3.11), the number of

copies of the initial tensor is increased by a factor of 4. After 𝑛 iterations according
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Figure 3-3: Relative error of free energy per spin 𝑔est estimated at bond dimensions
𝜒 = 4, 8, 12, 16, 20 using the HOTRG. 𝑇𝑐, 𝑔 are exact values of the critical temperature
and free energy per spin of the 2D Ising model according to Onsager’s solution.

to the RG equation, the coarser tensor 𝐴(𝑛) corresponds to 𝒩 = 2× 4𝑛 original spin

variables. The partition function 𝑍𝒩 of these 𝒩 original spin variables with only the

nearest-neighbor interaction and a periodic boundary condition is given by tracing

out the opposite legs of the 4-leg tensor 𝐴(𝑛),

𝑍𝒩 = A(n) . (3.15)

The estimated free energy per spin 𝑔est is thus,

𝑔est =
ln(𝑍𝒩 )

𝒩 , (3.16)

which can be compared with the exact solution 𝑔. The relative errors |𝑔est − 𝑔|/𝑔 at

different temperature 𝑇/𝑇𝑐 are plotted in Fig. 3-3, where 𝑇𝑐 is the exact value of the

critical temperature. The relative errors decay exponentially as the bond dimension
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increases, while the computation costs only grow polynomially like 𝑂(𝜒7). It is quite

amazing that 21 iterations of the HOTRG (corresponding to roughly 1013 spins) at

bond dimension 𝜒 = 20 can produce estimations of the free energy of the 2D Ising

model with an error of order 10−7 within one minute in a desktop computer!
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Chapter 4

Renormalization Group Prescription

in Tensor-network Language

The great success of the tensor-network RG in producing accurate free energy demon-

strated at the end of Chatper 3 is unprecedented. As long as the partition function

of the physical model in hand admits a tensor-network representation, the resultant

initial tensor can be fed into the tensor-network RG equation, like the one of the

2D HOTRG shown in Eq. (3.11), recursively, and out spit is an accurate estimation

of the free energy. Tensor-network RG schemes are thus both versatile and system-

atically improvable. Later developments of these techniques improve the accuracy

of the approximation during the leg squeezing step even further by considering a

larger environment [64, 67, 45] or manipulating the entanglement structure of the

network [24, 18, 16, 65, 3].

Nevertheless, free energy cannot be compared directly with experiment results.

For example, if the physical problem under consideration is a critical system, various

critical exponents, like the 𝜈 in Eq. (2.32), are physical observables of great interest.

A question arises naturally: Can we apply the RG prescription of the conventional

Hamiltonian-based RG in a similar manner in the context of the modern tensor-

network-based RG methods? If the answer is positive, we then have a kind of versatile

numerical RG methods in real space, being able to produce systematically-improvable

estimations of critical exponents directly. In this chapter, we propose a definition of
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the canonical RG prescription in tensor-network language and provide a theoretical

justification for the definition by considering its connection with the conventional

Hamiltonian-based way. In the next chapter, the validity of the definition will be

checked in the context of the two-dimensional Ising model, using an HOTRG-like

scheme.

4.1 Heuristic argument

A heuristic proposal of the RG prescription in tensor-network language is manifest

if we make an analogy to the conventional approach. As is shown in the example of

the 1D Ising model in Section 2.1, there are two steps after having an RG equation

in hand: identify fixed points and linearize the RG equation around the fixed points.

The critical exponents (or equivalently, scaling dimensions) are obtained from the

eigenvalues of the linearized RG equation around the corresponding critical fixed point.

For concreteness, let us mimic this conventional approach using the RG equation of

the HOTRG in Eq. (3.11) in the context of the 2D Ising model.

Step 1: Identify the critical fixed-point tensor 𝐴* By fine-tuning the inverse

temperature 𝐾 in the initial tensor shown in Eq. (3.2), it is expected to reach the

vicinity of the critical fixed-point tensor of the 2D Ising model by applying the RG

equation iteratively, such that

A∗ =
A∗

A∗

w∗w∗†
A∗

A∗

w∗w∗†

v∗†

v∗

, (4.1)

where we add an asterisk on every tensor to indicate that the above equation is at a

fixed point; it does not mean complex conjugate.
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Step 2: Linearize the RG equation around the fixed-point tensor Consider

small perturbation around this fixed-point tensor 𝐴 = 𝐴* + 𝛿𝐴, plug into the right-

hand side of Eq. (3.11) and collect all four first-order terms to have the linearized RG

equation,

δAc =
δA

A∗

w∗w∗†
A∗

A∗

w∗w∗†

v∗†

v∗

+ three similar terms. (4.2)

By diagonalizing the linear transformation defined by Eq. (4.2), critical exponents (or

scaling dimensions) can be extracted.

This heuristic proposal is almost correct, except for two caveats: local correlations

and gauge redundancy. We will discuss these two caveats in detail in Section 4.3,

and propose a practical way to deal with them in Chapter 5. After the two caveats

are handled, the only change is a modification of the isometric tensors 𝑤, 𝑣 by

incorporating the tensors coming from the procedures to address the caveats (see

Eq. (5.15) about this modification). However, let us first discuss why this definition

of the RG prescription in tensor-network language is reasonable by unveiling its

connection with the well-established Hamiltonian-based approach.

4.2 Connection with the Hamiltonian-based approach

In this section, we will see the value of the tensor in the modern tensor-network RG

plays the same role as the coupling constants in Hamiltonian-based RG. Mathemati-

cally, this means the RG equation in tensor-network language in principle represents

the same linear transformation as the RG equation in Hamiltonian-based language

does, but expressed in a different set of basis. We demonstrate this point by first

working out the RG prescription of the 1D Ising model in tensor-network language,

followed by a general argument inspired by this concrete example, where a formal
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definition of the canonical RG prescription in tensor-network language is provided.

4.2.1 Decimation of the 1D Ising model in tensor-network

language

We have used decimation of the 1D Ising model in Section 2.1 to demonstrate the

idea of real-space RG, where we focus on finding a map from an old Hamiltonian

to a coarser one. We see that the decimation for the 1D Ising model is an exact

real-space RG transformation. In this section, we will see that, even better, the

decimation has a natural tensor network representation. This makes the Ising model

in 1D a nice example to see the relation of the canonical RG prescription between the

tensor-network and the conventional Hamiltonian-based approaches.

We start by defining the tensor 𝐴 sitting on the bond connecting two spins shown

in Fig. 4-1 as (also look at Fig. 2-1)

𝐴𝜎1𝜎2 = exp [H (𝜎1, 𝜎2)]. (4.3a)

Plug in the expression for H in Eq. (2.2) and remember that 𝜎1, 𝜎2 = ±1, we have

𝐴 =

⎛⎝exp (𝑔 + ℎ+𝐾) exp (𝑔 −𝐾)

exp (𝑔 −𝐾) exp (𝑔 − ℎ+𝐾)

⎞⎠ , (4.3b)

which is the familiar transfer matrix. We can use the tensor 𝐴 to rewrite the partition

σ1 σ2 σ9

Ac Ac Ac Ac

σ′
1 σ′

5

A A

σ3 σ4 σ5 σ6 σ7 σ8

A A A A A A

σ′
2 σ′

3 σ′
4

Figure 4-1: In the tensor network language, the decimation in Fig. 2-1 is nothing
but a matrix multiplication of two transfer matrices to form a coarse-grained matrix
𝐴𝑐 = 𝐴𝐴.
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function of the 1D Ising model in Eq. (2.1) as a tensor network shown in Fig. 4-1,

𝑍1D =
∑︁
{𝜎𝑗}

𝑁⨂︁
𝑖=1

𝐴𝜎𝑖𝜎𝑖+1
. (4.4)

In the decimation, the spins on even sites 𝜎2, 𝜎4, . . . are summed over in the partition

function. In the tensor-network language, the spins become legs (or indices) of the

tensor, so the decimation becomes a multiplication of every two tensors,

𝐴𝑐 = 𝐴𝐴. (4.5)

The partition function can now be expressed using the coarser tensor 𝐴𝑐,

𝑍1D =
∑︁
{𝜎′

𝑗}

𝑁/2⨂︁
𝑖=1

(𝐴𝑐)𝜎′
𝑖𝜎

′
𝑖+1
. (4.6)

Equation (4.5) is the RG equation in tensor-network language. If we examine both

sides of Eq. (4.5) component by component, we will restore Eq. (2.8) in Chapter 2.

What we do in the conventional RG prescription is to impose that 𝐴𝑐 should have

the same form as 𝐴 in Eq. (4.3) but with new coupling constants 𝑔′, ℎ′, 𝐾 ′. However,

we can treat Eq. (4.5) as a legitimate RG equation, a map from old 𝐴 to coarser 𝐴𝑐,

on its own, without relying on the coupling constants description. The usual RG

idea then asks us to find fixed-point tensor 𝐴* of the tensor RG equation such that

𝐴* = 𝐴*𝐴* and linearize the RG equation around this fixed-point tensor. We will

know from previous analysis of the 1D Ising model that there is a high-temperature

fixed point 𝑔* = log (1/2), ℎ* = 0, 𝐾* = 0, corresponding to the fixed-point tensor,

𝐴* =
1

2

⎛⎝1 1

1 1

⎞⎠ . (4.7)

Notice that the constant term 𝑔 in the Hamiltonian becomes the overall multiplicative

constant exp(𝑔) of the tensor 𝐴 in Eq. (4.3) and that the fixed-point 𝑔* is adjusted

to have a 1/2 to make sure that we have 𝐴* = 𝐴*𝐴*, not just 𝐴* ∝ 𝐴*𝐴*. It is
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straightforward to find the linearized RG equation around 𝐴*,

𝛿𝐴𝑐 = 𝛿𝐴𝐴* + 𝐴*𝛿𝐴 = 𝐼𝛿𝐴𝐴* + 𝐴*𝛿𝐴𝐼, (4.8)

where in the last equal sign, we add two identity matrices. We can find the expression

of the linearized RG equation ℛ immediately by writing Eq. (4.8) in its component

form, (𝛿𝐴𝑐)𝑎𝑏 =
∑︀

𝛼,𝛽 𝐼𝑎𝛼 (𝛿𝐴)𝛼𝛽 (𝐴
*)𝛽𝑏 + (𝐴*)𝑎𝛼 (𝛿𝐴)𝛼𝛽 𝐼𝛽𝑏, so we have

ℛ(𝑎𝑏)(𝛼𝛽) =
(𝛿𝐴𝑐)𝑎𝑏
(𝛿𝐴)𝛼𝛽

= 𝐼𝑎𝛼 (𝐴
*)𝛽𝑏 + (𝐴*)𝑎𝛼 𝐼𝛽𝑏, (4.9)

where the index (𝑎𝑏), (𝛼𝛽) of ℛ means a group of two indices 𝑎, 𝑏 and 𝛼, 𝛽, with the

following order convention,

(11) → 1, (12) → 2, (21) → 3, (22) → 4. (4.10)

The matrix ℛ takes the following value

ℛ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1/2 1/2 0

1/2 1 0 1/2

1/2 0 1 1/2

0 1/2 1/2 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.11)

This matrix ℛ symmetric, with eigenvalues and eigenvectors: 𝜆1 = 2,v1 = (1, 1, 1, 1)𝑇 ;

𝜆2 = 1,v2 = (1, 0, 0,−1)𝑇 ; 𝜆3 = 1,v3 = (0, 1,−1, 0)𝑇 and 𝜆4 = 0,v4 = (1,−1,−1, 1)𝑇 .

The eigenvalues are the same as what we get in Eq. (2.14).

Notice how simple the canonical RG prescription is in tensor-network language!

The main advantage lies in the simplicity of the tensor RG equation in Eq. (4.5).

Since it is just a matrix multiplication, the linearization is straightforward. This

advantage remains in higher dimensions, as can be seen in Eqs. (4.1) and (4.2) for the

RG equation and the linearized version of the 2D HOTRG. By comparison, in the

Hamiltonian approach, the linearized RG equation has to be expressed as a linear
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map between old and coarser perturbation of the coupling constants around the fixed

point. The nonlinear relation between the coupling constants and the Boltzmann

weight makes the linearization process less trivial.

The relation between the tensor 𝐴 and the coupling constants in Eq. (4.3b) reveals

how the canonical RG prescription in tensor-network language is related to the

conventional one in Hamiltonian-based language. We want to find the relation between

𝛿𝐴 and the coupling constants 𝛿𝑔, 𝛿ℎ, 𝛿𝐾. To this end, plug 𝑔 = log (1/2) + 𝛿𝑔, ℎ =

𝛿ℎ,𝐾 = 𝛿𝐾 into the right hand side of Eq. (4.3b), Taylor expand, and only keep the

linear terms,

𝐴𝑝 = 𝐴* +
1

2
𝛿𝑔

⎛⎝1 1

1 1

⎞⎠+
1

2
𝛿ℎ

⎛⎝1 0

0 −1

⎞⎠
+

1

2
𝛿𝐾

⎛⎝ 1 −1

−1 1

⎞⎠+ higher-order terms . (4.12)

We can read off 𝛿𝐴 = 𝐴𝑝 − 𝐴* as

𝛿𝐴 =
1

2
𝛿𝑔

⎛⎝1 1

1 1

⎞⎠+
1

2
𝛿ℎ

⎛⎝1 0

0 −1

⎞⎠+
1

2
𝛿𝐾

⎛⎝ 1 −1

−1 1

⎞⎠ . (4.13)

Recall the order convention in Eq. (4.10), we see the correspondence v1 ↔ 𝛿𝑔, v2 ↔ 𝛿ℎ

and v4 ↔ 𝛿𝐾. Compare these results with Eq. (2.14), we notice that the linearized

RG equations in tensor-network and Hamiltonian-based language are indeed the same

linear transformation expressed in different bases.

4.2.2 Formal argument

The decimation of the 1D Ising model in tensor-network language provides a prototype

of the canonical RG prescription in tensor-network language and also demonstrates

the relation of the canonical RG prescription in two languages. We are now ready to

give a general definition of the canonical RG prescription in tensor-network language.

In the tensor-network RG approach, we skip the Hamiltonian description of the
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system. Instead, we use a tensor network made of copies of tensor 𝐴 to represent the

partition function 𝑍 of the system. The tensor RG equation is a map from the tensor

𝐴 to the coarser tensor 𝐴𝑐, like the processes that are shown in Eq. (3.5) and Fig. 4-1.

We claim that the components of the tensor 𝐴 can be thought of as some proxies of

the coupling constants K based on the previous 1D Ising model example (this claim

was also hinted in Ref. [24]).

Definition 4.2.1 (Canonical RG prescription in tensor-network language). Given a

𝑑-dimensional tensor-network model consisting of copies of tensor 𝐴 and a legitimate

tensor-network RG equation 𝐴𝑐 = 𝒯 (𝐴) with scaling factor 𝑏, the canonical RG

prescription is the following procedure: 1) identify a fixed-point tensor 𝐴* satisfying

𝐴* = 𝒯 (𝐴*); 2) linearize the tensor RG equation around 𝐴* to have (𝛿𝐴𝑐)(𝑖) =∑︀
𝑗 ℛ(𝑖)(𝑗)𝛿𝐴(𝑗); 3) extract the scaling dimension {𝑥𝛼} from the eigenvalues {𝜆𝛼} of

the matrix ℛ according to 𝑏𝑑−𝑥𝛼 = 𝜆𝛼.

Remark 1. Besides keeping the change of the partition function as small as possible, a

legitimate tensor-network RG equation should exhibit fixed-point tensors and have its

gauge redundancy properly fixed. See Section 4.3 for the detailed discussions about

this.

Remark 2. Since the overall multiplicative constant of the fixed-point tensor 𝐴* does

not affect physics, the fixed-point equation generally looks like 𝐴* ∝ 𝒯 (𝐴*). However,

it is always possible to adjust the multiplicative constant to make sure that the

fixed-point tensor should satisfy 𝐴* = 𝒯 (𝐴*). See Eqs. (4.3) and (4.7) for the case

of the 1D Ising model as a concrete example and Appendix 2 in Ref. [24] for a more

detailed discussion.

Let us discuss why this definition is reasonable by working out its formal connection

with the Hamiltonian-based approach. However, keep in mind that the canonical

RG prescription does not rely on the Hamiltonian description and can be carried out

on its own without thinking about coupling constants at all. To start, remember
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that the partition function in Hamiltonian-based language can be mapped into a

tensor-network model, as is shown in Section 3.1; each element of the initial tensor

𝐴 is the probability weight of a given local spin configuration and depends on the

coupling constants,

𝐴(𝑖) = 𝑓(𝑖) (K) , (4.14)

where all legs of 𝐴 are group together to form a single index, 𝐴(𝑖) ≡ 𝐴𝑖1𝑖2𝑖3𝑖4 . We

perform the coarse graining according to a given RG equation. Each element of the

coarser 𝐴𝑐 are thus functions of K but with different functional forms determined by

the RG equation,

(𝐴𝑐)(𝑖) = (𝑓𝑐)(𝑖) (K) . (4.15)

In the conventional Hamiltonian-based approach, we impose the condition that each

element of the coarser tensor 𝐴𝑐 should have the same functional form (usually the

form of the Boltzmann weight) as that of 𝐴, but with different coupling constants K′,

𝑓(𝑖) (K
′) = (𝐴𝑐)(𝑖) = (𝑓𝑐)(𝑖) (K) ,∀(𝑖). (4.16)

If such K′ exists, the RG transformation will have both the tensor-network and

the Hamiltonian representations. In tensor-network language, 𝐴 RG−−→ 𝐴𝑐, and in

Hamiltonian-based language 𝐾 RG−−→ 𝐾 ′; the two languages are related to each other

according to Eqs. (4.14) and (4.16). At the fixed point,

𝐴* RG−−→ 𝐴* or 𝐴* = 𝒯 (𝐴*) . (4.17)

Take the total derivative of tensors 𝐴 and 𝐴𝑐 in Eqs. (4.14) and (4.16) and set
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δA δAc

δK δK ′Rold

R

∂(n)f(i)(K
∗)

Tensor
space

Hamiltonian
space

Figure 4-2: Relation between the two linearized RG equations in Hamiltonian and
tensor-network languages. It is reminiscent of Fig. 1-1. Provided that a Hamiltonian
description exists for a tensor-network coarse-graining scheme, such that 𝐴(𝑖) =
𝑓(𝑖)(K), (𝐴𝑐)(𝑖) = 𝑓(𝑖)(K

′) , the linearized RG equation in tensor-network language ℛ
and that in Hamiltonian-based language ℛold are the same linear transformation in
two representations.

K = K′ = K*,

𝛿𝐴(𝑖) =
∑︁
𝑛

(︀
𝜕(𝑛)𝑓(𝑖)

)︀⃒⃒⃒
K=K*

𝛿𝐾𝑛, (4.18)

(𝛿𝐴𝑐)(𝑖) =
∑︁
𝑛

(︀
𝜕(𝑛)𝑓(𝑖)

)︀⃒⃒⃒
K′=K*

𝛿𝐾 ′
𝑛. (4.19)

The translation between the RG prescription in two languages is specified in Eqs. (4.18)

and (4.19), with 𝜕(𝑛)𝑓(𝑖) evaluated at K* being the change of basis matrix. Under this

transformation, the linearized RG equation in Eq. (2.18) becomes

(𝛿𝐴𝑐)(𝑖) =
∑︁
𝑗

ℛ(𝑖)(𝑗)𝛿𝐴(𝑗), (4.20)

which is the linearized RG equation in tensor-network language. We have shown that

the RG equations in two languages are two different representations of the same linear

transformation, so they must have the same eigenvalue spectrum (see Fig. 4-2).

4.3 Two caveats

In the formal definition of the canonical RG prescription in tensor-network language

in Section 4.2.2, the tensor-network RG equation should be legitimate. In this section,

we explain the word “legitimate”. A legitimate tensor-network RG equation should

exhibit fixed-point tensors satisfying Eq. (4.17) (or Eq. (4.1) for the HOTRG). There
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are two major obstacles preventing us from achieving a legitimate tensor-network RG:

local correlations and gauge redundancy in tensor-network language.

4.3.1 Local correlations

This feature was discovered at the birth of the tensor-network RG idea. When

proposing the tensor renormalization group (TRG), the first realization of the tensor-

network RG, Levin and Nave found there are too many fixed points for the RG

equation of the TRG. Specifically, this means that two different initial tensors both

belonging to the high-temperature phase will flow to two different fixed points, instead

of one [37]. Levin and Nave’s claim was supported by the numerical evidence shown

by Hinczewski and Berker [27], who also discovered that the critical fixed-point tensor

seems to disappear at larger bond dimensions. The numerical evidence indicates that

the TRG has difficulty filtering out microscopic details (like the temperature of the

system), so physical at the original lattice scale is carried all the way to larger scales,

which is not a desirable feature of a good RG transformation. The local correlations

retaining in the tensor make identification of fixed-point tensors more difficult than

the conventional Hamiltonian approach.

We can understand the origin of the problem of local correlations by reexamining

what would happen at a later stage of a block-tensor transformation described in

Eq. (3.6) and Fig. 3-2. For the convenience of reading, we show the physical picture of

the block-tensor transformation again in Fig. 4-3. Let us say we start with a system

at its high-temperature phase. After a step of the block-tensor transformation, 16

smaller black squares turn into 4 bigger squares, with more spin variables sitting on

each side of each larger square. At a later stage of the RG iterations, the fixed-point

tensor corresponds to a black square that is very large. To determine the structure

of the fixed-point tensor, let us consider the following physical argument. The spin

variables on different sides must be uncorrelated since they are very far away from

each other, except for the spin variables around the four corners. Around a corner,

the spin variables are always closed to each other and thus are correlated. The local

correlations are represented by a matrix 𝐶 in Fig. 4-3, encoding physical at the original
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all spins inside
are summed

over

⇐≡ACDL

(a)

(b)

Figure 4-3: Physical original of the CDL structure. (a) The physical picture of a
block-tensor transformation. The old tensor 𝐴 is surrounded by four spin variables,
while the coarser tensor 𝐴𝑐 is surrounded by eight spin variables. (b) At a later stage
of the block-tensor transformation, many original spin variables sit on the sides of
the square, with all spins in the middle are traced out during the coarse graining. If
the system is in its high-temperature phase, the spin variables on one edge must be
uncorrelated with those on another edge, except for the spin variables around the four
corners, which remain to be very close to each other. The correlations between spin
variables around the corner can be described by a matrix 𝐶, the direct product of four
copies of which gives rise to a CDL tensor 𝐴CDL.

lattice scale. Any two groups of the spin variables on two different corners are far

away, and thus are uncorrelated; the fixed-point tensor should be a direct product of

four copies of 𝐶. We call a tensor with such structure a corner double-line (CDL)

tensor.

It has been shown that a tensor with the CDL structure is an exact fixed-point

tensor of the TRG [37, 24, 18, 26] and the HOTRG [54]. This fact indicates that

the lattice-scale physics will be kept under the coarse graining according to the TRG

or the HOTRG. As a concrete example, imagine we start with two initial tensors

at temperature 𝑇1 > 𝑇2 > 𝑇𝑐. The local correlations around the corner are different

for the two tensors, captured by two different matrices 𝐶1 ̸= 𝐶2. Though the two

tensors belong to the high-temperature phase, they eventually flow to two different

CDL tensors, one consisting of 𝐶1 and the other 𝐶2. Therefore, instead of a single

high-temperature fixed point, the tensor RG flow generated by the TRG (or the
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Figure 4-4: Schematic RG flows of the 2D Ising model, one is what we expect and
the other is what the TRG (or any TRG-like scheme) generates. The starting points
of the RG flows form the blue dashed line, representing the lattice model at different
temperatures. RG flows are drawn using solid lines with arrows. (a) The tensor RG
flows we expect for the 2D Ising model. There are three fixed points in the tensor
space, one high-temperature fixed point indicated by 𝑇 = ∞, one low-temperature
fixed point indicated by 𝑇 = 0, and one critical fixed point 𝑇 = 𝑇𝑐. (b) The tensor
RG flows the TRG (or any TRG-like scheme) generate. Since the local correlations
at the original lattice scale are carried all the way to larger scales, different starting
points, even belonging to the same phase, will flow to different fixed points with the
CDL structure. The critical fixed point might disappear at bond dimensions 𝜒 > 8,
as is indicated in the numerical evidence by Hinczewski and Berker [27].

HOTRG) will exhibit a fixed line shown in Fig. 4-4(b). At criticality, Hinczewski

and Berker’s calculations have shown that the critical fixed point disappears at bond

dimensions 𝜒 > 8 for the TRG. By comparison, Fig. 4-4(a) shows the RG flow we

expect. We will introduce a way to collapse all the tensors with the CDL structure to

a single tensor with bond dimension 𝜒 = 1 for the HOTRG in Chapter 5.

4.3.2 Gauge redundancy

The second obstacle that makes the identification of the fixed-point tensors difficult is

the gauge redundancy of the tensor-network representation of a partition function. The

partition function is invariant under a certain transformation of the local tensor, gauge

transformation. For example, for the tensor-network representation of the partition

function in Fig. 3-1, we are free to transform the local tensor 𝐴 in the following way,

𝐴𝑖𝑗𝑘𝑙 =
∑︁
𝑚,𝑛
𝑝,𝑞

𝐴𝑚𝑛𝑝𝑞 (𝑆𝑥)𝑖𝑚 (𝑆𝑦)𝑗𝑛
(︀
𝑆−1
𝑥

)︀
𝑝𝑘

(︀
𝑆−1
𝑦

)︀
𝑞𝑙
, (4.21a)
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or pictorially as

Ã = ASx

Sy

S−1
x

S−1
y

, (4.21b)

where 𝑆𝑥, 𝑆𝑦 are some invertible matrices. It is easy to see that such transformation

leaves the partition function invariant. We can treat Eq. (4.21) as a equivalence

relation that defines a equivalence class [𝐴].

In fact, the tensor-network RG techniques feature the exploiting of this gauge

redundancy of tensor-network representations. For the HOTRG described in Sec-

tion 3.2.2, we use eigenvectors defined in Eq. (3.14) as a set of good basis vectors, since

their importance is reflected by the corresponding eigenvalues. Several unimportant

basis vectors are thrown away and a change of horizontal basis of a patch of two copies

of 𝐴 is performed in Eq. (3.10) using 𝑤† as 𝑆𝑥 to define the coarse graining in the

vertical direction.

However, the gauge redundancy makes the identification of a fixed point more

difficult than the conventional Hamiltonian-based approach. The tensor RG equation

can take the fixed-point tensor in the equivalence class [𝐴*] from one representation

to another representation,

𝐴* coarse−−−−→
graining

𝐴*. (4.22)

A legitimate tensor-network RG equation should have its gauge redundancy fixed by

choosing a preferred set of basis to achieve a manifestly fixed-point tensor satisfying

𝐴* RG−−→ 𝐴*. We will show a way to fix the gauge redundancy in Chapter 5.
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Chapter 5

A Numerical Realization

In this chapter, we propose a practical numerical realization of the canonical RG

prescription in tensor-network language defined in Chapter 4, using the HOTRG as

the tensor coarse-graining scheme. The key for a numerical realization is to deal with

the two caveats, local correlations and gauge redundancy, discussed in Section 4.3, for

the HOTRG.

5.1 Filtering out local correlations: a HOTRG-like

scheme

We use a technique called the graph-independent local truncation (GILT) [26] to solve

the problem of local correlations for the HOTRG. It should be mentioned that there are

many other techniques to filter out the local correlations [24, 18, 16, 3, 65, 25, 20, 66, 35].

We choose to combine the HOTRG with the GILT in this thesis because of its

conceptual simplicity, ease in implementation, and more importantly, the convenience

for the further generalization to 3D systems.

Detect the local correlations in a tensor network containing loops The

defining feature of the GILT is that it can in principle be applied to any tensor-network

coarse-graining scheme, making it very flexible. The first coarse-graining pattern of the

GILT is the TRG, with their collaboration designed in the original GILT paper [26].
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People have shown that this combination is capable of generating correct tensor RG

flows in the context of the 2D Ising model [26] and the 2D 𝜑4 theory [13]. The GILT

detects the local correlations in a tensor 𝐴 by looking at the property of a loop-like

tensor network consisting of copies of 𝐴. For example, a possibility is a plaquette

consisting of four copies of 𝐴 shown in Fig. 5-1, where the 𝐶 matrix is drawn explicit

for a clear demonstration, and it is in fact unknown inner structure of the tensor 𝐴.

When four copies of 𝐴 forming a plaquette, copies of 𝐶 matrix hold their hands to

form a loop, representing a single number. We know, a priori, that if we know how

to determine this number represented by this loop, we can distribute this number to

tensor 𝐴 as an overall multiplication constant; the resultant tensor will have a smaller

bond dimension. The GILT provides a way to simplify this loop redundancy form by

four copies of 𝐶. The idea is to insert a low-rank matrix 𝑄 into a bond we wish to

truncate. The plaquette after the insertion should give a good approximation of the

initial one. The low-rank matrix 𝑄 is constructed in such a way that its singular value

decomposition cuts the legs of matrix 𝐶. We can repeat the procedure on other three

legs and filter out the local correlations inside this plaquette completely. However,

since in practice, every insertion of a low-rank matrix 𝑄 comes with an approximation

error, we should only perform the necessary truncations of legs. To this end, let us

discuss why the HOTRG has difficulty filtering out local correlations.

Design GILTs for the HOTRG Let us study how the CDL tensors in Fig. 4-3

transform under the HOTRG. The corner matrix 𝐶 can be assumed to be symmetric

considering its physical origin. It can be further put into its diagonal form. In order

to find the isometric tensor for the CDL tensors, we refer to Eqs. (3.10), (3.12) and

(3.13b), which says the isometry is a collection of the eigenvectors of

M M† ∝

C

. (5.1)
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Q

local

insertion

split Q

absorption Qr Ql

C C

C C

Figure 5-1: Truncation a single bond of the plaquette consisting of tensor 𝐴 using the
GILT. Four copies of 𝐶 matrices are unknown inner structure of 4-leg tensor forming
the plaquette. They are drawn explicitly to make the demonstration clearer. In the
first step, a low-rank matrix 𝑄 is inserted into a bond. The splitting of the 𝑄 into two
pieces using singular value decomposition cuts the leg of corner matrix 𝐶. Finally,
two pieces of the matrix 𝑄 are absorbed into the two neighboring 4-leg tensors. The
original GILT paper [26] presents a way to determine the low-rank matrix 𝑄. A brief
introduction is provided in Appendix B.

Let us say 𝐶 is a √
𝜒×√

𝜒 matrix, so 𝑀𝑀 † is a 𝜒2×𝜒2 matrix. Equation (5.1) shows

the rank of 𝑀𝑀 † is 𝜒. The eigenvectors of this 𝑀𝑀 † are easy to write down. Since

𝐶 is already in its diagonal form, we do nothing about the two outer matrices,

and . The inner matrix, , is the outer product of two 𝜒-dimensional

vectors, both constructed from two 𝐶 matrices, so the inner matrix has rank 1. The

only eigenvector of the inner matrix with non-zero eigenvalues is the vector in the

outer product, properly normalized,

≡
⧸︂√︃

. (5.2)

Therefore, the isometry 𝑤 for the HOTRG coarse graining of two 𝐴CDL tenors in the

vertical direction is

w

. (5.3)
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Figure 5-2: How to choose the plaquette and where to insert the low-rank matrices
to filter out the problematic local correlations for the HOTRG.

Use this isometry to squeeze the legs of 𝐴CDL in the manner as is shown in Eq. (3.10),

we see that 𝐴CDL is a fixed-point tensor of the HOTRG,

∝ . (5.4)

Equations (5.3) and (5.4) tells us that the isometric tensor of the HOTRG can only

detect and trace out the inner copies of 𝐶 matrices, but cannot filter out the outer

copies. Therefore, we should use the GILT to truncate the legs of outer copies of the

matrix 𝐶. Let say we want to block the two copies of 𝐴 indicated in Fig. (5-2)(a).

Based on the reason explained before, we should choose the plaquettes where the loops

of local correlations are drawn explicitly as the target of the GILT. Two low-rank

matrices 𝑄𝐴, 𝑄𝐵 are then inserted into the bonds to truncate the legs of unwanted

𝐶 matrices. Finally, the ordinary HOTRG is applied to the patch of tensors in the

dashed circle in Fig. 5-2. The coarse graining in the vertical direction becomes

A′ ≡
A

A

ww†

QAl QAr

QBl QBr

. (5.5)
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It is clear that the coarse graining defined in Eq. (5.5) can filter out all four horizontal

legs of copies of 𝐶 matrix; two of four are removed by the GILT, and other two are

traced out by the HOTRG isometric tensor. Repeat this process in the horizontal

direction to achieve the full coarse graining (we refrain from calling it an RG equation

because the gauge redundancy has not been taken care of yet),

Ac =
A

A

ww†

QAl QAr

QBl QBr

A

A

v†

v

Q′
Bu

Q′
Bd

Q′
Au

Q′
Ad

. (5.6)

Notice if the tensors coming from the GILT are absorbed into the HOTRG isometric

tensors, the coarse graining has the same form as the HOTRG in Eq. (3.11), except a

modification of the triangular tensors. Since the computation costs of the GILT are

𝑂(𝜒6), smaller than 𝑂(𝜒7) for the HOTRG, the overall computational costs grow like

𝑂(𝜒7).

Since the RG transformation defined in Eq. (5.6) will simplify a CDL tensor to a

single number,

Eq. (5.6)−−−−−→
(︃ )︃4

, (5.7)

the problem of local correlations is solved in the proposed HOTRG-like scheme. The

fixed line represented by tensors with the CDL structure shown in Fig. 4-4(b) will

collapse into a single fixed point.

71



5.2 Gauge fixing

In this section, we propose a way to fix the gauge redundancy and point out a

special property of the HOTRG-like scheme proposed in the previous section, reducing

the gauge redundancy to sign ambiguities for real tensors with spatial reflection

symmetries.

5.2.1 A general proposal

If the physical model in hand has a global internal symmetry, the symmetry can be

exploited to fix part of the gauge redundancy, because the global symmetry can be

imposed into the tensor-network representation of the model and the symmetry can

be preserved exactly during a tensor-network RG transformation. For example, if Z2

symmetry of the 2D Ising model is imposed, half of the gauge redundancy will be fixed,

since we are always in the basis where states in the even sector transform trivially,

while those in the odd sector is multiplied by −1 under the spin-flip transformation.

The remaining gauge (except for sign or phase ambiguities) in the degenerate

sectors of 𝐴 can be fixed by the following procedure. For the simplicity of the

demonstration, we explicitly show the procedure only in the horizontal direction; the

vertical direction can be done in the same manner. We first contract two vertical legs

of 𝐴 to get a matrix 𝑁𝑥,

Nx = A . (5.8)

We then find its eigenvalue decomposition,

Nx =
W−1

xWx λ , (5.9)

where 𝜆 is the diagonal matrix encoding eigenvalues. To fix the gauge redundancy

in the horizontal direction, we act the invertible matrix 𝑊𝑥 and its inverse on the
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horizontal legs of the tensor 𝐴,

A
horizontal−−−−−−→

gauge fixing
A

W−1
x Wx

. (5.10)

In Appendix B, we show why this procedure defines a preferred set of basis.

5.2.2 A special property of the proposed HOTRG-like scheme

It turns out that the general gauge fixing procedure is not necessary for the HOTRG-

like scheme if the physical system under consideration has reflection symmetries like

the 2D Ising model. The scheme itself has its own preferred set of basis, collapsing the

general gauge redundancy into sign ambiguities (or phase ambiguities for tensors with

complex components). We focus on real tensors in this section, but the generalization

to complex tensors is straightforward.

We will show in Appendix B that, if two real tensors 𝐴,𝐴 connected with each

other by the gauge transformation defined in Eq. (4.21), where the 𝑆𝑥, 𝑆𝑦 is further

restricted to be orthogonal matrices, the coarser tensors generated the HOTRG-like

scheme, 𝐴𝑐 and 𝐴𝑐, are equal up to sign ambiguities,

(︁
𝐴𝑐

)︁
𝑖𝑗𝑘𝑙

= (𝐴𝑐)𝑖𝑗𝑘𝑙 (𝑑𝑥)𝑖(𝑑𝑦)𝑗(𝑑𝑥)𝑘(𝑑𝑦)𝑙, (5.11)

where 𝑑𝑥, 𝑑𝑦 are vectors with components ±1. Let us assume that the sign ambiguities

have already been taken care of, the tensor RG equation ensures

𝒯 (𝐴) = 𝒯 (𝐴). (5.12)

Equation (5.12) says that the whole equivalence class [𝐴] will be mapped into the

same coarser tensor 𝐴𝑐 after the coarse graining! Apply this special property to the

equivalence class of a fixed-point tensor [𝐴*], we realized that we can start with an

arbitrary representation 𝐴*, the tensor RG equation will bring it to the unique basis

73



automatically to have 𝐴* = 𝒯 (𝐴*), which is a manifestly-fixed-point tensor,

𝒯 (𝐴*) = 𝒯
(︁
𝒯 (𝐴*)

)︁
≡ 𝐴*. (5.13)

5.2.3 Sign ambiguities

The sign ambiguities between two tensors can be fixed by comparing the sign of

their non-vanishing components. As an simple example, upon making sure that

(𝐴𝑐)𝑖111 ̸= 0, ∀𝑖, examine these components in Eq. (5.11) to have

(𝐴𝑐)𝑖111 = (𝐴𝑐)𝑖111(𝑑𝑥)𝑖. (5.14)

The sign difference of two tensors determines (𝑑𝑥)𝑖. For a symmetric tensor, we can

the above trick in each degenerate sector of the tensor. We provide an implementation

of the sign fixing for Z2 symmetric tensors in the source code 1.

5.3 Overall procedure for the numerical realization

Let us pause at this point to summarize the proposed numerical realization of the

canonical RG prescription in tensor-network language. For simplicity, we only discuss

real tensors here.

Step 1: Determine pieces of low-rank matrices in the GILTs according to Fig. 5-2 to

filter out the local correlations for the subsequent HOTRG.

Step 2: Apply the HOTRG in the vertical direction to the patch of tensors shown in

Fig. 5-2.

Step 3: Repeat the first steps in the horizontal directions to obtain the coarser tensor

𝐴𝑐. The pictorial representation of the coarse graining from 𝐴 to 𝐴𝑐 is shown

in Eq. (5.6).

1The source code of this paper can be found at github.com/brucelyu/tensorRGflow.
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Step 4: Fixed the sign ambiguities of 𝐴𝑐 by comparing it with the input tensor 𝐴

according to Eq. (5.14); notice that 𝐴𝑐 and 𝐴 should be properly normalized.

The end result is to apply 𝑑𝑥, 𝑑𝑦 on horizontal and vertical legs of 𝐴𝑐.

Step 5: Define the modified tensor �̃�, 𝑣 by absorbing into 𝑤, 𝑣 pieces of low-rank

matrices coming from the GILTs in the right hand side of Eq. (5.6) and sign

fixing diagonal matrices 𝑑𝑥, 𝑑𝑦. As an example, �̃� is define as

w̃
=

w

QAr

QBr

dx

. (5.15)

After this modification, the linearized RG equation is Eq. (4.2) where all the

isometric tensors are replaced with their tilde version.

Step 6: Diagonalize the linearized RG equation to obtain critical exponents (or scaling

dimensions).

5.4 Benchmark results

In this section, we use the two-dimensional (2D) classical Ising model to demonstrate

how to carry out the canonical RG prescription in tensor-network language using

the proposed HOTRG-like scheme. The source code can be used to reproduce the

numerical analysis below 2.

5.4.1 Analysis of the RG flow

Pull out the tensor norm after each RG iteration The partition function under

consideration is given in Eq. (3.1), with its tensor-network representation in Fig. 3-1.

For convenience, the initial tensor in Eq. (3.2) is denoted as 𝐴(0) here. During the RG

iteration, the magnitude of the tensor will in general grow (or decay) rapidly, causing

trouble numerically; this concern can be taken care of by pulling out the Frobenius

2The source code of this paper can be found at github.com/brucelyu/tensorRGflow.
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norm of the tensor before feeding it into the tensor RG equation. For example, at the

first iteration, we perform 𝐴(0) = ‖𝐴(0)‖𝒜(0), to define a normalized tensor 𝒜(0), which

will be fed into the RG equation in Eq. (5.6). The subsequent iteration is similar. At

the n-th iteration, the output is 𝐴(𝑛) = ‖𝐴(𝑛)‖𝒜(𝑛). The RG flow of ‖𝐴(𝑛)‖ can be

easily visualized.

The RG flows of the tensor norm We use the RG flows of ‖𝐴(𝑛)‖ to demonstrate

the proposed HOTRG-like scheme generates what we expect, as is shown in Fig. 4-4(a).

Several RG flows starting at temperatures close to the critical temperature are shown in

Fig. 5-3. Let us first discuss RG flows generated by the proposed HOTRG-like scheme,

shown in Fig. 5-3(a), at bond dimension 𝜒 = 30 and the hyper-parameter of the GILT

𝜖gilt = 6× 10−6. Different curves are generated at different temperatures deviations

from the estimated critical temperature 𝑇 [𝜒=30]
𝑐 . For example, the Δ𝑇 = +10−3 curve

is the RG flow starting from the initial tensor at temperature 𝑇 [30]
𝑐 + 10−3. As the

deviation |Δ𝑇 | from the estimated critical temperature becomes smaller and smaller,

the RG flow tends to stay longer near the critical fixed-point tensor, before flowing

away to two trivial fixed points. The estimated critical temperature can be determined

to very high precision using the RG flow of ‖𝐴(𝑛)‖. The relative difference of the

estimation from the exact value, |𝑇 [30]
𝑐 − 𝑇𝑐|, is of order 10−6.

By comparison, we also show the RG flow generated by the HOTRG at bond

dimension 𝜒 = 12 in Fig. 5-3(b) 3. As has been shown in the schematic RG flow in

Fig. 4-4(b), the RG flow generated by the HOTRG has lots of trivial fixed points, and

the critical fixed-point tensor does not appear.

The RG flows of the singular values of the normalized tensor The RG flow

of a single indicator such as ‖𝐴(𝑛)‖ gives us evidence that we have reached a critical

fixed-point tensor. More convincing it would be if more information about the tensor

3In principle, we can choose 𝜒 = 30 here. In practice, however, our calculations show that the
problem of local correlations in the HOTRG becomes worse at larger bond dimensions (see Ref. [27]
for a similar observation in the context of the TRG) and that 𝜒 = 12 is enough to demonstrate this
problem.
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Figure 5-3: The RG flows of the tensor norms ‖𝐴(𝑛)‖ at temperatures near the
estimated critical temperature 𝑇 [𝜒]

𝑐 . Different markers represent different deviations
|Δ𝑇 | from 𝑇

[𝜒]
𝑐 . Blue solid lines are for Δ𝑇 < 0 and black dashed lines for Δ𝑇 > 0.

(a) For the proposed HOTRG-like scheme with 𝜒 = 30, 𝜖gilt = 6 × 10−6, two trivial
fixed points are isolated and the critical fixed point can be reached. It corresponds to
the schematic RG flows in Fig. 4-4(a). (b) For the plain HOTRG with 𝜒 = 12, we
have fixed lines and there is no exhibition of a critical fixed point. It corresponds to
the schematic RG flows in Fig. 4-4(b).
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RG flows is in hand. One choice is the singular values 𝑠(𝑛) of tensors 𝒜(𝑛) defined as

A(n)
svd
=

U

V †s(n)
, (5.16)

which is another gauge-independent indicator of the tensor RG flow apart from the

Frobenius norm. Fig. 5-4(a) gives us more confidence that a critical fix-point tensor is

reached.

After adding a sign-fixing step, we can achieve a manifestly-fixed-point tensor 𝐴*.

The difference bettwen the normalized tensor at adjacent RG steps ‖𝒜(𝑛+1) −𝒜(𝑛)‖ is

shown in Fig. 5-4(b). From RG step 𝑛 = 14, the difference starts to decay, reaches

its minimal value of order 10−2 at 𝑛 = 23, and increases when the tensor flows away

from this unstable fixed point. If the sign is not fixed, as is shown in Fig. 5-4(c),

the RG transformation will scatter the tensor among different representations of the

fixed-point equivalence class.

5.4.2 Scaling dimensions

The linearized tensor RG equation ℛ with a form similar to Eq. (4.2) can be generated

conveniently using the automatic differentiation implemented in JAX [5]. We linearize

the RG equation at RG steps 𝑛 = 14, 15, . . . , 28, and extract scaling dimensions {𝑥𝛼}
from the eigenvalues {𝜆𝛼} of ℛ according to 22−𝑥𝛼 = 𝜆𝛼. The first few smallest scaling

dimensions are shown in Fig. 5-5, where the exact values [14] are indicated using

dashed lines. We get correct estimations of scaling dimensions up to 2.125. The

estimations at RG step 𝑛 = 14 and 28 are unreliable since ‖𝒜(𝑛+1)−𝒜(𝑛)‖ is of order 1

(see Fig. 5-4(b)). Comparison between scaling dimensions in Fig. 5-5 and difference of

adjacent normalized tensors in Fig. 5-4(b) indicates that the canonical RG prescription

in tensor-network language gives reliable estimations of scaling dimensions as long as

the values of ‖𝒜(𝑛+1) −𝒜(𝑛)‖ have order of or smaller than 10−1

The estimations of all scaling dimensions ≤ 2 at RG step 𝑛 = 22 are shown in

Table 5.1. The results obtained by the bread-and-butter Gu and Wen’s method [24]
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Figure 5-4: The RG flows of (a) singular values defined in Eq. (5.16) and (b) the
difference between the normalized tensors, ‖𝒜(𝑛+1) −𝒜(𝑛)‖ with sign fixing and (c)
without, all at the estimated critical temperature 𝑇 [30]

𝑐 , generated by the proposed
HOTRG-like scheme with 𝜒 = 30, 𝜖gilt = 6× 10−6.

are also shown (the transfer matrix is constructed using two copies of the critical

fixed-point tensor). The canonical RG prescription estimates scaling dimensions with

similar accuracy as the bread-and-butter method.
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Figure 5-5: The scaling dimensions of the 2D Ising model from the canonical RG
prescription using the proposed HOTRG-like scheme with 𝜒 = 30, 𝜖gilt = 6 × 10−6.
Dashed lines are the exact values.

5.4.3 Remarks

We end this chapter with a few remarks on the above calculations. Firstly the Z2

is preserved exactly in the RG transformation by imposing this symmetry on the

tensors [51, 52]. There are three reasons. The first consideration is to prevent the

generations of any Z2-odd fields. Otherwise, the low-temperature fixed point becomes

unstable and tends to flow to the high-temperature fixed point eventually due to

numerical errors. The second reason is to fix part of the gauge redundancy (see

Sec. 5.2). The third reason is to make the computation costs lower since the effective

bond dimension becomes smaller when symmetric tensors are employed.

The second remark is the systematic improvement of the estimations as we increase

the bond dimension. At a fixed bond dimension 𝜒, the hyper-parameter of the

GILT 𝜖gilt can be tuned in the following way. Since the GILT process gives rise to

additional approximation errors, 𝜖gilt should be chosen as small as possible since it

controls the approximation errors of the GILT. However, it cannot be too small,
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Table 5.1: The scaling dimensions for the relevant and marginal operators of the 2D
Ising model at criticality from the canonical RG prescription and from the transfer
matrix method à la Gu and Wen [24], both using the proposed HOTRG-like scheme
with 𝜒 = 30, 𝜖gilt = 6× 10−6 at RG step 𝑛 = 22.

Exact 0.125 1 1.125 1.125 2 2 2 2
RG
pres. 0.127 1.009 1.125 1.128 2.002 2.004 2.068 2.073

Trans.
mat. 0.125 1.002 1.128 1.128 2.014 2.014 2.016 2.016

or otherwise the problem of local correlations arises and there would be no critical

fixed point. In our calculations, the best 𝜖gilt at bond dimensions 𝜒 = 10, 20, 30 are

6× 10−4, 6× 10−5, 6× 10−6. The estimated scaling dimensions converge to the exact

results in this process.

The final remark is that the method proposed in this chapter is only one possible

numerical realization of the canonical RG prescription in tensor-network language

defined in Chapter 4. The purpose is to show that the convention RG prescription

really works in this modern RG idea and to prepare for its further applications to 3D

systems, where the bread-and-butter method is inapplicable.
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Chapter 6

Summary and Discussions

In this thesis, we show the canonical RG prescription works in modern tensor-network

language. Pedagogically, it provides a new way to introduce the RG idea. The intuitive

aspect of the tensor-network RG as a real-space RG makes the physical picture easier

to grasp than the momentum-space RG implementation. Besides, the estimated scaling

dimensions, as physical observables that can be compared directly with experiment

results, can be improved systematically by increasing the bond dimension.

Compared with the state-of-art methods to extract scaling dimensions in tensor-

network RG ideas, the canonical RG prescription is from a pure RG perspective

and does not rely on any nontrivial RG arguments explicitly. This makes the RG

prescription more advantageous in 3D systems. In future work, we plan to generalize

the HOTRG-like scheme proposed in this thesis to 3D and use the canonical RG

prescription to extract scaling dimensions of 3D critical systems, where there are few

practical tensor-network-based methods 1 to extract scaling dimensions efficiently. It

would also be very interesting to study how to implement the canonical RG prescription

in the context of other 3D tensor-network RG techniques with lower computational

costs than the HOTRG, for example, the anisotropic tensor renormalization group [1]

1From the perspective of a real-space RG transformation for quantum systems [56], the scale-
invariant multiscale entanglement renormalization ansatz (MERA) [57] can be used to build a
scaling superoperator [48]. The scaling dimensions are obtained from the eigenvalues of the scaling
superoperator [22]. However, the computation costs of the MERA for 2+1D quantum systems grow
as 𝑂(𝜒16) [17], much higher than 𝑂(𝜒11) for the 3D HOTRG.
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or renormalization group on a triad network [31].
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Appendix A

Optimization forms of eigenvalue

problems

In Sec. 3.2.2, it is claimed that the optimization problem in Eq. (3.13) can be converted

into an eigenvalue problem. This is a well-known result. We will provide a short proof

here to make this thesis self-contained.

Given a Hermitian positive semi-definite matrix 𝐻, find the optimal matrix 𝑤 such

that Tr (𝑤†𝐻𝑤) is maximized, provided that the matrix 𝑤 satisfies 𝑤†𝑤 = 1. This

constraint means that (𝑤†𝑤)𝑖𝑗 =
∑︀

𝛼𝑤
*
𝛼𝑖𝑤𝛼𝑗 is 0 for 𝑖 ̸= 𝑗 and is 1 for 𝑖 = 𝑗. The first

condition says that the column vectors of 𝑤 are orthogonal to each other, and the

second says that they are normalized. We first impose the normalization constraint

and construct the Lagrangian,

ℒ =
∑︁
𝛼𝛽𝑖

𝐻𝛼𝛽𝑤
*
𝛼𝑖𝑤𝛽𝑖 −

∑︁
𝑖

𝜆𝑖

(︃∑︁
𝛼

𝑤*
𝛼𝑖𝑤𝛼𝑖 − 1

)︃
, (A.1)

where 𝜆𝑖 are the Lagrange multipliers. Set the derivative of ℒ with respect to 𝑤*
𝛼𝑖 to

zero, we get the following eigenvalue problem for 𝐻,

∑︁
𝛽

𝐻𝛼𝛽𝑤𝛽𝑖 = 𝜆𝑖𝑤𝛼𝑖, (A.2)

which means the columns of 𝑤 are the eigenvectors of 𝐻. Then, the quantity that we
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want to maximize becomes Tr (𝑤†𝐻𝑤) =
∑︀

𝑖 𝜆𝑖. Finally, we impose the orthogonality

condition of 𝑤, so the columns of 𝑤 should be the linearly independent eigenvectors

of 𝐻 corresponding to the first several largest eigenvalues. This completes our proof.
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Appendix B

Proof regarding gauge fixing

For the general gauge fixing scheme Let first show the gauge fixing procedure

in Eqs. (5.8) to (5.10) can collapse the gauge freedom to phase ambiguities. The

goal is to show that if two tensors 𝐴,𝐴 are fed into the procedure, the general gauge

transformation in horizontal legs becomes a sign ambiguity. After the contraction of

two vertical legs, the two matrices 𝑁𝑥, �̃�𝑥 have the following relation

Ñx = NxSx S−1
x . (B.1)

Assume that the eigenvalues of 𝑁𝑥 are all distinct, the matrix 𝑊𝑥 in the eigenvalue

decomposition (see Eq. (5.9)) is related to �̃�𝑥 through

W̃x =
Wx

Sx

dx , (B.2)

where 𝑑𝑥 coming from phase ambiguities of eigenvectors has its diagonal entries to be

pure phases. After the horizontal gauge fixing, the tensor 𝐴 becomes

Ã
horizontal−−−−−−→

gauge fixing
A

W−1
x Wxdx dx

Sy

S−1
y

. (B.3)
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Comparison between Eq. (5.10) and Eq. (B.3) shows the gauge freedom 𝑆𝑥 in horizontal

direction now collapse into phase ambiguities 𝑑𝑥.

For the special property of the proposed HOTRG-like scheme Next, we

show the special property of the proposed HOTRG scheme in Eq. (5.11). For simplicity

of demonstration, we focus on real tensors; the generalization to general complex

tensors is straightforward. The 𝑆𝑥, 𝑆𝑦 matrices are further restricted to be orthogonal,

Ã = ASx

Sy

ST
x

ST
y

. (B.4)

Such orthogonal matrices are sufficient if the representations of the equivalence class

[𝐴] have spatial reflection symmetries [16],

𝐴𝑘𝑗𝑖𝑙 =
∑︁
𝑗′𝑙′

(𝑂𝑦)𝑗𝑗′(𝑂𝑦)𝑙𝑙′𝐴𝑖𝑗′𝑘𝑙′ (B.5a)

and

𝐴𝑖𝑙𝑘𝑗 =
∑︁
𝑖′𝑘′

(𝑂𝑥)𝑖𝑖′(𝑂𝑥)𝑘𝑘′𝐴𝑖′𝑗𝑘′𝑙, (B.5b)

where 𝑂𝑥, 𝑂𝑦 are orthogonal matrices, also with 𝑂2
𝑥 = 𝑂2

𝑦 = 1, and the legs’ order

convention is as per Eq. (3.2). The tensor has such symmetries if the physical system

under consideration has spatial reflection symmetries, and the tensor-network RG

scheme preserves such symmetries, which is true for the proposed HOTRG-like scheme1

applied to the 2D Ising model. Furthermore, in the preferred basis of the proposed

HOTRG-like scheme, 𝑂𝑥, 𝑂𝑦 become diagonal, with their diagonal entries ±1.

Let study how two tensors 𝐴,𝐴 transforms under the coarse graining defined in

Eq. (5.5). The goal is to show that two coarser tensors 𝐴′, 𝐴′ have the following

1This is because the pieces of low-rank matrices and the isometric tensors in the RG equation of
the HOTRG-like scheme in Eq. (5.6) will inherit the reflection symmetries of the input tensor 𝐴.
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relation

Ã′ = A′
dx

Sy

dx

ST
y

, (B.6)

where 𝑑𝑥 is diagonal with entries ±1. It follows that the full tensor coarse graining in

Eq. (5.6) collapses general gauge freedom into sign ambiguities.

To this end, it is necessary to give a brief introduction about how the GILT

constructs the low-rank matrix 𝑄 in Fig. 5-1. The environment 𝐸 is defined, followed

by its singular value decomposition,

𝐸 ≡ svd
=

V †

U

s , (B.7)

where we refrain from drawing the unknown 𝐶 matrices in the plaquette. Here, we

treat 𝐸 as a linear map from the vector space of all the legs with ingoing arrows to

that of all the legs with outgoing arrows. The matrix 𝑄 is constructed from the tensor

𝑈 and singular value spectrum 𝑠 in the following fashion. Define a vector 𝑡 using 𝑈 ,

t ≡ U . (B.8)

Then, the vector 𝑡 is truncated according to the singular value spectrum 𝑠,

𝑡′𝑖 = 𝑡𝑖
𝑠2𝑖

𝑠2𝑖 + 𝜖2gilt
, (B.9)

where 𝜖gilt is the hyper-parameter of the GILT, controlling the approximation error

of the above soft truncation. The original GILT paper [26] explains why this soft

truncation works. The low-rank matrix 𝑄 is constructed from the tensor 𝑈 † and the

89



truncated vector 𝑡′ as

Q ≡ U†
t′

. (B.10)

We are all prepared for proving Eq. (B.6). We must determine how various tensors

with and without tilde are related. First, it is easy to see the singular value spectrum

remains invariant under the gauge transformation, but the tensor 𝑈 transforms like

Ũ = U

ST
x Sx

. (B.11)

The vector 𝑡 is thus invariant, which further means 𝑡′𝑖 = 𝑡′𝑖 since the tilde version of

the right hand side of Eq. (B.9) is the same as the original version. Finally, Eq. (B.10)

gives

Q̃A (B.10)
= Ũ†

t̃′
= U†

Sx ST
x

t′

=
QASx ST

x . (B.12)

We see the low-rank matrix𝑄 transforms covariantly under the gauge transformation. If

the singular values of 𝑄𝐴 do not have degeneracy, after the singular value decomposition

of 𝑄𝐴, we have 𝑄𝐴𝑟, 𝑄𝐴𝑙 transform like (the sign ambiguities coming from singular

value decomposition would contribute to 𝑑𝑥 in Eq. (B.6), but we do not draw them

explicitly)

QArSxQ̃Ar

=
and Q̃Al

=

QAl ST
x . (B.13)

Equation (B.13) indicates that all the 𝑆𝑥, 𝑆
𝑇
𝑥 matrices acting on the four horizontal legs

of the local patch in Eq. (5.5) will be canceled since the low-rank matrices transform

covariantly. We see that the GILT has a preferred basis.

However, there is a final twist. Our calculations show that the low-rank matrices are
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projection operators, which are highly degenerated. As a result, the gauge redundancy

in the degenerate subspace will leak out. Luckily, the subsequent HOTRG favors the

basis where the positive semi-definite matrix 𝑀𝑀 † in Eq. (3.13) is diagonal (the sign

ambiguities coming from eigenvalue decomposition of 𝑀𝑀 † would similarly kick in

here and contribute to 𝑑𝑥 in Eq. (B.6)), and there is no apparent degeneracy in the

eigenvalue spectrum of 𝑀𝑀 † based on our numerical results.
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