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The notion of a photon was first proposed by Einstein in 1905, his year of miracles, in an attempt
to explain the photoelectric effects. The subsequent experiment conducted by Compton demonstrated
that the photon also carries momentum, which gave a strong evidence of the existence of a single
photon. However, the satisfactory description incorporating both wave and particle nature of light
didn’t appear until the advent of quantum mechanics. In this paper, we will use the quantum
mechanical description of light to explore the question: what is a single photon? We start by
reviewing the quantization of a single mode of electromagnetic field and the photon state introduced
in 8.05x. We will move on to extend our discussion to the quantization of a general electromagnetic
field. One-photon multimode state is then introduced, which is the state analogous to an isolated
corpuscle of light traveling in spacetime with speed of light. To answer the question that where the
photon is, the principle of photodetectors is introduced. The detection probability of a photon at a
given spacetime point is derived. We conclude with a phenomenon unique to a single photon: it can
not be detected at different places at the same time!

I. INTRODUCTION

Before the 20th century, light was described successfully
by Maxwell’s equations and was thought to be electromag-
netic waves. In 1905, Einstein treated light as photons to
explain photoelectric effect successfully, while Maxwell’s
theory of light had difficult to explain such phenomenon.
It was not clear why light sometimes behaves like waves
but sometimes behaves like particles. The unified theory
of light is the quantum version of Maxwell’s theory, also
known as quantum electrodynamics. The notion of a
single photon is best understood under the framework of
quantum electrodynamics.

The particle nature of light is usually demonstrated
using light with extremely low intensity. In double slits
experiments, in order to rule out the possibility that
interaction among photons causes the interference pattern,
light source with extremely low intensity has been used
and it is said that photons appear on the screen one by
one. Feynman explained the particle nature of light in his
lecture [1], arguing that the light always comes as lump
when we detect it. However, it should be emphasized that
these arguments are inappropriate. Low intensity only
indicates the average of photon number is much smaller
than one, but not necessarily means there is only one
photon in spacetime. In addition, the discrete clicks we
hear in the detector can be well explained by the quantum
nature of the detector alone, while the quantization of
light is not indispensable.

This paper focuses on giving a unified description of a
single photon. In section II, we start with the wave de-
scription of light, Maxwell’s equations, and then construct
its quantum version. In section III, we will see the notion
of photons comes looking for us when we try to find the
eigenstates of Hamiltonian of the electromagnetic field.
Single-photon multimode state is introduced, which is the
quantum state of light analogous to an isolated photon
in spacetime. Finally, in section IV, the principle of pho-
todetectors is introduced, and we calculate the detection
probability of a single photon at a given spacetime point.

A phenomenon unique to a single photon that makes it
different from classical state of light is that the double
detection probability at different places at the same time
is zero.

II. QUANTIZATION OF THE
ELECTROMAGNETIC FIELD

In chapter 9 of 8.05x, photon states are introduced,
where we examined a single mode of the electromag-
netic field in a rectangular cavity with frequency ω and
wavenumber k = ω/c, with c the speed of light in vac-
uum. We learned that the Hamiltonian of a single mode
electromagnetic field resembles that of a one-dimensional
harmonic oscillator with electric field acting like position
variable and magnetic field acting like momentum variable
(which is which is more of a convention). After promoting
both dynamic variables to operators and imposing the
canonical commutation relation, we construct the quan-
tum theory of a single mode of the electromagnetic field.
The classical electric and magnetic fields both become
field operators.

We extend our discussion to an electromagnetic field
with many modes. Since we have seen this topic in class
using a specific example of the electromagnetic field in
a rectangular cavity, we will make our discussion more
general here. We will find that, due to the orthogonality
between different modes, the extended version Hamilto-
nian is just the sum of different single mode Hamiltoni-
ans. Various vector identities used in this section can
be found in Jackson’s book [2] or be conveniently proved
using index notation to write everything in its component
form and applying the identity about Levi-Civita symbol
εijkεimn = δjmδkn − δjnδkm. The discussion here follows
Ballentine [3] and Aspect [4] closely.

The energy of the electromagnetic field is

EEM = (8π)−1
∫
d3x

(
E2(x, t) + B2(x, t)

)
. (1)
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Notice Gaussian unit is used in this paper. We will see in
the end of this section that Eq. (1) can be put into a nicer
form that is convenient for us to postulate its quantum
version. In vacuum, with no electric charge, E and B
satisfies source-free Maxwell’s equations

∇ ·E = 0, (2)

∇ ·B = 0, (3)

∇×E = −1

c

∂B

∂t
, (4)

∇×B =
1

c

∂E

∂t
, (5)

which are called Gauss’s law, no magnetic monopole,
Faraday’s law and Ampère’s law respectively. We can
eliminate B in Maxwell’s equations to get one second
order differential equation for E: take the time derivative
of Ampère’s law Eq. (5), use Faraday’s law Eq. (4) to
eliminate B, apply the vector identity ∇ × (∇ × a) =
∇(∇ · a)−∇2a, and use Gauss’s law Eq. (2) to have

1

c

∂2E

∂t2
= ∇×

(
∂B

∂t

)
= −c∇× (∇×E) = c∇2E. (6)

Apply our familiar separation of variable technique to
write E(x, t) = 2

√
πωq(t)u(x), where the strange pref-

actor 2
√
πω is put there to make the final expression of

energy looks nicer. Plug this ansatz into Eq. (6) and
make some rearrangements

∇2u(x) =

(
1

c2
d2q(t)

dt2
1

q(t)

)
u(x). (7)

It can be seen that (d2q/dt2)(1/q) should be a constant,
and we let it to be −ω2, or otherwise u(x) would have
time dependence. Then Eq. (7) gives

d2q

dt2
= −ω2q, (8)

∇2u(x) = −
(ω
c

)2
u(x). (9)

The spatial part Eq. (9) has a similar structure to the
time-independent Schrödinger equation. After applying
some boundary conditions, we will get a complete set
of eigenfunctions um(x) and eigenvalues ωm labeled by
integer m. For each mode with eigenvalue ωm, Eq. (8)
can be solved for qm(t). um(x) is sometimes called mode
function and can be chosen to satisfy the orthonormality
condition ∫

d3xum′(x) · um(x) = δm′m. (10)

A general solution is the linear combination of solutions
with different m

E(x, t) =
∑
m

2
√
πωmqm(t)um(x), (11)

and B can be obtained by plugging Eq. (11) into Fara-
day’s law Eq. (4)

B(x, t) =
∑
m

2
√
π
c

ωm
pm(t)∇× um(x), (12)

with dpm/dt = −ω2
mqm. The curl of mode functions also

has orthogonality property that the integral
∫
d3x(∇×

um′(x)) · (∇× um(x)) vanishes if m′ 6= m. To show this,
apply another vector identity ∇ · (a× b) = b · (∇× a)−
a · (∇× b) with a = um′(x) and b = ∇× um(x)

∇ · [um′(x)× (∇× um(x))] = (∇× um′(x)) · (∇× um(x))

− um′(x) · (∇× (∇× um(x))) . (13)

The second term in Eq. (13) can be simplified using the
same trick in Eq. (6) as we eliminate B in Maxwell’s
equations

um′(x) · (∇× (∇× um(x))) = −um′(x) · ∇2um(x)

=
(ωm
c

)2
um′(x) · um(x), (14)

where in the last step, we use the differential equation for
u in Eq. (9). Integrate Eq. (13) over the space to have∫

d3x(∇× um′(x)) · (∇× um(x))

=
(ωm
c

)2
δm′m +

∫
d3x∇ · [um′(x)× (∇× um(x))]

=
(ωm
c

)2
δm′m. (15)

The volume integral in second line of Eq. (15) can be
shown to vanish by converting it to surface integral on the
boundary and use the fact that um′(x) is perpendicular
to the conducting surface. We are now ready to calcualte
the energy of electromagnetic field. Let us plug E in Eq.
(11) and B in Eq. (12) into the energy of electromagnetic
field in Eq. (1)

EEM =
1

2

∑
m′,m

∫
d3x
[
ωm′ωmqm′(t)qm(t)um′(x) · um(x)

+
c

ωm′

c

ωm
pm′(t)pm(t)(∇× um′(x)) · (∇× um(x))

]
=

1

2

∑
m

[
ω2
mq

2
m(t) + p2m(t)

]
, (16)

where we use the orthonormality condition for um in Eq.
(10) and the orthogonality condition for ∇ × um in Eq.
(15) in the last step.

Equation (16) is our desired result. Compared
with what we learned in 8.05x, where the energy of
a single mode of the electromagnetic field is E =
1/2

(
p2(t) + ω2q2(t)

)
, we notice the energy of multimode

electromagnetic field is simply the sum of the energy of
different modes. Let us go quantum! The procedure is
similar to what we did in class. The only difference is
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that we have a summation symbol here. We postulate a
Hamiltonian by promoting dynamic variables pm and qm
to operators

ĤEM =
1

2

∑
m

(
p̂2m + ω2

mq̂
2
m

)
, (17)

where p̂m and q̂m are the promoted Schrödinger opera-
tors and they satisfy the canonical commutation relation
[q̂m′ , p̂m] = i~δm′m. The Hamiltonian is the same as a
system of independent harmonic oscillators. As usual, we
can define annihilation and creation operators associated
with m-th mode, âm and â†m, as

âm =
1√

2~ωm
(ωmq̂m + ip̂m), (18)

â†m =
1√

2~ωm
(ωmq̂m − ip̂m). (19)

It can be shown immediately that the commutation rela-
tion in terms of âm and â†m is

[âm′ , â†m] = δm′m, (20)

and the Hamiltonian can be written using creation and
annihilation operators

ĤEM =
∑
m

~ωm
(
â†mâm +

1

2

)
=
∑
m

~ωm
(
N̂m +

1

2

)
, (21)

where the number operator is defined as usual, N̂m =
â†mâm. The electric field E becomes a field operator after
we promote pm and qm to operators

Ê(x) =
∑
m

2
√
πωmq̂mum(x)

=
∑
m

√
2π~ωm(âm + â†m)um(x). (22)

It should be emphasized that the x in Eq. (22) is a
label to indicate which operator we are talking about. It
should not be confused as position operators x̂, which is
a dynamic variable of a particle, or an observable.

III. NOTION OF A SINGLE PHOTON

Now we have the Hamiltonian of electromagnetic field
in hand, it is time to find its spectrum. It is an easy task
for us since the Hamiltonian is the same as a collection of
independent harmonic oscillators. The ground state |0〉
is the state that is killed by all annihilation operators âm

âm |0〉 = 0,∀m. (23)

The ground state is labeled by number 0 because it is
eigenstate for all number operators N̂m = â†mâm with

eigenvalue 0, N̂m |0〉 = â†mâm |0〉 = 0,∀m. If we define
total number operator

N̂ =
∑
m

N̂m, (24)

then the state |0〉 is also its eignestate with eigenvalue
0. For this reason, the ground state is also known as
vacuum, because it represents a world with nothing in
it. A general energy eigenstate is built by acting creation
operators repeatedly on vacuum and is labeled by various
eigenvalues of N̂m

|n1, n2, ..., nm, ...〉 = (â†1)n1(â†2)n2 ...(â†m)nm ... |0〉 , (25)

where the order of creation operators in right-hand side
is not important since they all commute. The state in Eq.
(25) is interpreted to have n1, n2, ..., nm, ... photons with
frequency ω1, ω2, ..., ωm, ... respectively.

A. One-photon Multimode State

Now it is natural to introduce the state that is analogous
to an isolated corpuscle of light. What properties of
the state do we expect if it represents a single photon
propagating in spacetime at the speed of light? A single
photon can have any frequency it likes but one thing we
know for sure is that the total photon number should be
one in such a state. Can we construct eigenstates of total
number operator N̂ with eigenvalue 1? The answer is
yes and it is not hard. The state â†m |0〉 represents one

photon with frequency ωm, and it is an eigenstate of N̂
with eigenvalue 1. The linear combination of such states
with all possible m values will also be eigenstates of N̂
with eigenvalue 1. Let us define

|1〉 =
∑
m

cmâ
†
m |0〉 , (26)

with cm some coefficients. The state with the form given
in Eq. (26) is called one-photon multimode state. We can
check that

N̂ |1〉 =
∑
m

cmN̂ â
†
m |0〉 =

∑
m

cmâ
†
m |0〉 = |1〉 . (27)

To make the state well-normalized, the coefficients should
satisfy

∑
m |cm|2 = 1. Since the number operator N̂m

commutes with the Hamiltonian ĤEM, the total number
operator N̂ commutes with ĤEM too, and the total photon
number is a conserved quantity. If the initial state of
electromagnetic field is a one-photon multimode state
of the form in Eq. (26) with some known coefficients,
the time-evolved state |1(t)〉 will still be a one-photon
multimode state. It looks we are on the right track.

B. Where is Our Photon?

Next, let us explore whether it is possible to recover the
classical picture of a single photon flying in spacetime with
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speed of light. The first guess is that we can calculate the
expectation value of the electric field operator. Consider
a single photon that is localized at some region at a
given time t, our hope is that the expectation value of
the electric field operator in this region should be larger.
However, this is not true, as will be shown below. In
order to calculate the expectation value of the electric
field operator at time t, we choose to use Heisenberg’s
picture here. The Heisenberg operator version of Ê(x)
in Eq. (22) can be obtained by replacing creation and
annihilation operators on the right-hand side with their
Heisenberg operator version

Ê(x, t) =
∑
m

2
√
πωmq̂m(t)um(x)

=
∑
m

√
2π~ωm

(
âm(t) + â†m(t)

)
um(x), (28)

where we add the time dependence to indicate Heisenberg
operator. We have calculated âm(t) and â†m(t) several
times in class. As a review, we repeat the calculation
here. There is no explicit time dependence in ĤEM so the
time evolution operator is Û(t) = exp(−itĤEM/~). By
definition, Heisenberg operator version of annihilation op-
erator âm is âm(t) = exp(itĤEM/~)âm exp(−itĤEM/~) =

exp(iωmtN̂m)âm exp(−iωmtN̂m). In the second step,
we use the fact that all terms with subscript not
equal to m in ĤEM commute through âm.We then
take the time derivative to get a differential equation
˙̂am(t) = iωm exp(iωmtN̂m)[N̂m, âm] exp(−iωmtN̂m) =
−iωmâm(t). The initial condition is âm(t = 0) = âm
so we have âm(t) = exp(−iωmt)âm. Take the hermitian
conjugate to get â†m(t) = exp(iωmt)â

†
m. Plug this results

into Heisenberg operator Ê(x, t) in Eq. (28),

Ê(x, t) =
∑
m

√
2π~ωm

(
âme

−iωmt + â†me
iωmt

)
um(x)

= Ê+(x, t) + Ê−(x, t), (29)

where in the second step we break the electric field oper-
ator into positive and negative parts with the definitions

Ê+(x, t) =
∑
m

√
2π~ωmâme−iωmtum(x), (30)

Ê−(x, t) =
∑
m

√
2π~ωmâ†meiωmtum(x). (31)

The reason for this decomposition will become clear in
the next section where we discuss detection of photons.
For now just remember there are two parts in the electric
field operator, positive part containing all annihilation
operators and negative part containing all creation opera-
tors. The expectation value of the electric field operator
is

〈1| Ê(x, t) |1〉 =
∑
m,k,l

√
2π~ωm

(
c∗l ck 〈0| âlâmâ

†
k |0〉 e

−iωmt

+ c∗l ck 〈0| âlâ†mâ
†
k |0〉 e

iωmt
)
um(x) = 0. (32)

To see why it vanishes, let us look closely at the fac-

tor 〈0| âlâmâ†k |0〉. There is one creation operator but
two annihilation operators, so by no means can we have

âlâmâ
†
k |0〉 ∝ |0〉, as a result 〈0| âlâmâ†k |0〉 = 0. Same rea-

son works for the other factor with two creation operators
but only one annihilation operator. Nothing interesting
happens if we only look at the expectation value of the
electric field operator. They average to zero in one-photon
multimode state |1〉.

However, what about the mean square of the electric
field operator, 〈1| Ê(x, t) · Ê(x, t) |1〉? We know the mean
square of the electric field is proportional to the intensity
of light in classical electromagnetic theory so it is reason-
able to expect this quantity peaks in the region where the
single photon is localized. Let us calculate! The square
of Ê(x, t) is

Ê(x, t) · Ê(x, t) = Ê+(x, t) · Ê+(x, t) + Ê−(x, t) · Ê−(x, t)

+ Ê−(x, t) · Ê+(x, t) + Ê+(x, t) · Ê−(x, t). (33)

We calculate term by term. Moments of first two
terms vanish: 〈1| Ê+(x, t) · Ê+(x, t) |1〉 = 〈1| Ê−(x, t) ·
Ê−(x, t) |1〉 = 0 because the number of creation operators
is not equal to that of annihilation operators between the
vacuum 〈0| ... |0〉. For the third term in Eq. (33)

Ê−(x, t) · Ê+(x, t) =
∑
m,n

2π~
√
ωmωn

× (um · un)â†mâne
i(ωm−ωn)t, (34)

while we have

〈1| â†mân |1〉 =
∑
k,l

c∗kcl 〈0| âkâ†mânâ
†
l |0〉

=
∑
k,l

c∗kcl 〈0| [âk, â†m][ân, â
†
l ] |0〉

=
∑
k,l

c∗kclδkmδnl 〈0|0〉 = c∗mcn. (35)

The moment of the third term in Eq. (33) is thus

〈1| Ê−(x, t) · Ê+(x, t) |1〉 =
∑
m,n

2π~
√
ωmωn

× (um · un)c∗mcne
i(ωm−ωn)t. (36)

The last term in Eq. (33) can be calculated in the same
manner. We state the result here

〈1| Ê+(x, t) · Ê−(x, t) |1〉 =
∑
m,n

2π~
√
ωmωn

× (um · un)c∗ncme
i(ωn−ωm)t +

∑
m

2π~ωmu2
m. (37)

Combine the results in Eq. (36) and Eq. (37) to get the
mean square of the electric field operator

〈1| Ê(x, t) · Ê(x, t) |1〉 =
∑
m

2π~ωmu2
m +

∑
m,n

2π~
√
ωmωn

× (um · un)2<(c∗mcne
i(ωm−ωn)t), (38)
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where <(z) means real part of a complex number z. The
first term in Eq. (38) does not have cm dependence or
time dependence but only depends on the spectrum of
the configuration. The second term can describe the
disturbance propagating in spacetime. The peak of the
distribution in space at time t is the region where the
single photon is localized. We will give our statement
here a physical picture in the next section, where we will
find the moment of Ê−(x, t) · Ê+(x, t) in Eq. (36) will
affect detection rate of a photodetector placed at position
x at time t.

Still, we want to answer the question: where is the
photon, more precisely. Is it possible to define a position
operator X̂ similar to what we have in non-relativistic
quantum mechanics for a single particle, so the eigenstate
of this position operator |x〉 represents a photon at posi-
tion x? Sidney Coleman argued in one of his quantum
field theory lectures [5] that although such position oper-
ator can be well-defined, it will lead to unphysical results
like traveling faster than the speed of light in vacuum. He
argued further that the underlying physical reason is that
once you try to localize a single particle to a small enough
region, the uncertainty in its momentum will become so
large that pair production will occur. As a result, we do
not know whether we still have a single particle. The
field operators are the right tool to use since they deal
with this relativity causality automatically. In classical
electrodynamics, the information of the existence of a
charged particle in vacuum will travel at speed of light
outwards in form of electromagnetic radiation. Outside
the wavefront, the field is zero. In order to get an answer
to the question: where is the photon, we should rephrase
the question and ask “what is the probability to detect
the photon at spacetime point (x, t)?”, which is a more
appropriate question in quantum mechanics. This leads
us to our discussion on photon detection.

IV. DETECTION OF A SINGLE PHOTON

We claimed in previous section that the mean square
of the electric field operator in Eq. (38) can be thought
as intensity of the light, and the peak of this quantity
in space is the region where the single photon localized.
In this section, we will develop this idea and go deeper.
First, let us think what the intensity of the light means
when we have a single photon. Classically, when the
intensity of light is larger, it means the light is brighter.
When the brighter light hits on the retina in our eyes,
more excited our optic nerve will be, which means the
detection rate of our eye becomes larger. If we have a
single photon, intensity of the light at spacetime point
(x, t) is naturally related to the probability of detecting
the photon at position x and time t.

We have apparatus called photodetector to detect pho-
tons through its interaction with light. When light shines
on such apparatus, the photons will kick a bounded elec-
tron in the atom out into its continuous spectrum. The

signal of an outgoing electron is amplified, and then we
can hear a click. We have encountered such process in
8.06x when we talked about ionization and light-atom
interaction in chapter 5 and 6, where we focused on quan-
tization of atom and treated the electric field as a classical
object. The effect of electric field with amplitude E0 en-
ters the transition rate as a factor E2

0 . Similar results will
be found here when we treat the electric field as a quan-
tum mechanical object. The discussion in this section
follows Ballentine [3], Aspect [4] and Cohen-Tannoudji
[6] closely.

A. Principle of Photodetectors

The Hamiltonian of an atom-light system Ĥ has three
pieces: atom contribution Ĥat, electromagnetic field con-
tribution ĤEM and interaction of atom and field contri-
bution δĤ

Ĥ = Ĥat + ĤEM + δĤ = Ĥ0 + δĤ, (39)

where we denote the sum of atom and electromagnetic
field Hamiltonian as Ĥ0 to indicate we treat them as un-
perturbed Hamiltonian while we will treat the interaction
Hamiltonian δĤ as perturbation and time dependent per-
turbation theory will be applied. ĤEM has been solved in
the previous section, and we assume the atom Hamilto-
nian has been solved too, so the eigenstate of Ĥ0 is tensor
product of atom and electromagnetic field eigenstate. Let
us put the detector at position x, and consider the electric
dipole interaction

δĤ = −d̂ · Ê(x), (40)

where d̂ is the electric dipole operator of the atom, which
is proportional to its position operator, and Ê(x) is the
electric field operator in Eq. (22). If there is no interaction
term, atom and light live in different Hilbert space and
mind their own business, nothing interesting happens.
With the δĤ term, two systems talk to each other, and
the ground state atom will be kicked to excited state
accompanied by photon annihilation (We have seen this
in 8.06x problem sets [7]). The calculation in this section
will be more complicated than previous sections but the
purpose is clear: we want to calculate the probability we
hear a click in our photodetector. This corresponds to
the transition probability where the atom stays in ground
state |g〉 with the electromagnetic field in state |ψi〉 at
time t = 0, and after some time t the atom goes to excited
state |e〉 while the electromagnetic field ends in state |ψf 〉.
The initial and final state of the system is

|i〉 = |g〉 ⊗ |ψi〉 , (41)

|f〉 = |e〉 ⊗ |ψf 〉 . (42)

Go to the interaction picture where δĤ(t) =

exp(iĤ0t/~)δĤ exp(−iĤ0t/~). The time evolution op-
erator will factorize into atom and field two parts, each
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acting on its corresponding operator in δĤ

δĤ(t) = −eiĤatt/~d̂e−iĤatt/~ · Ê(x, t), (43)

with Ê(x, t) the Heisenberg operator version of electro-
magnetic field operator in Eq. (29). According to first
order time dependent perturbation theory [8], the transi-
tion amplitude of the event |i〉 → |f〉 at time t is

1

i~

∫ t

0

dt′ 〈f | δĤ(t′) |i〉 = − 1

i~

∫ t

0

dt′ 〈ψf | Ê(x, t′) |ψi〉

· 〈e| eiĤatt
′/~d̂e−iĤatt

′/~ |g〉

= − 1

i~

∫ t

0

dt′eiωegt
′
〈e| d̂ |g〉 · 〈ψf | Ê(x, t′) |ψi〉 , (44)

with ωeg = (Ee−Eg)/~, where Ee, Eg are energy of state

|e〉 , |g〉 respectively. Recall Ê(x, t′) can be break into
positive and negative parts defined in Eq. (30) and Eq.
(31), one with its terms proportional to âm exp(−iωmt′),
the other â†m exp(iωmt

′). Since ωm and ωeg are both
positive, only terms proportional to exp(i(ωeg − ωm)t′)
with ωeg − ωm ≈ 0 will contribute much to the inte-
gral(remember the stationary phase argument), while
terms associated with negative parts are all proportional
to exp(i(ωeg + ωm)t′), oscillating fast in the integral. As
a result, it is reasonable to keep only the positive part of
the electric field operator when calculating the transition
amplitude, so we have

1

i~

∫ t

0

dt′ 〈f | δĤ(t′) |i〉

= − 1

i~

∫ t

0

dt′eiωegt
′
〈e| d̂ |g〉 · 〈ψf | Ê+(x, t′) |ψi〉 . (45)

The modulus squared of the transition amplitude in Eq.
(45) is the transition probability at time t

Pe,f←g,i(t) =

(
1

~

)2∑
µ,ν

∫ t

0

dt′
∫ t

0

dt′′eiωeg(t
′−t′′)

× 〈g| d̂ν |e〉 〈e| d̂µ |g〉 〈ψi| Ê−ν (x, t′′) |ψf 〉 〈ψf | Ê+
µ (x, t′) |ψi〉 ,

(46)

where we express the inner product of two vectors in its
component form. For detectors that do not distinguish
final state, we can sum over both atom excited state e
and field final state f

Pg,i(t) =
∑
e,f

Pe,f←g,i(t)

=

(
1

~

)2 ∑
µ,ν,e

∫ t

0

dt′
∫ t

0

dt′′eiωeg(t
′−t′′)

× 〈g| d̂ν |e〉 〈e| d̂µ |g〉 〈ψi| Ê−ν (x, t′′)Ê+
µ (x, t′) |ψi〉 , (47)

where we use the complete relation:
∑
f |ψf 〉 〈ψf | = 1.

One more approximation is to replace sum over e with

integral,
∑
e =

∫
dωen(ωe), where n(ωe) is the usual

density of state. To make the expression less messy, let us
make a few more definitions. Group everything associated
with electric field operators as

Gνµ(x, t′′;x, t′) = 〈ψi| Ê−ν (x, t′′)Ê+
µ (x, t′) |ψi〉 , (48)

which is called correlation function. Group everything
about the atom along with the overall constant as

sνµ(t′ − t′′) = ~−2
∫
dωen(ωe) 〈g| d̂ν |e〉 〈e| d̂µ |g〉 eiωeg(t

′−t′′)

=

∫
dωesνµ(ωe)e

iωeg(t
′−t′′), (49)

where sνµ(ωe) = ~−2n(ωe) 〈g| d̂ν |e〉 〈e| d̂µ |g〉 is called the
frequency response function and sνµ(t′ − t′′) sensitivity
function. The transition probability in Eq. (47) can be
expressed as

Pg,i(t) =
∑
µ,ν

∫ t

0

dt′
∫
dωesνµ(ωe)

×
∫ t

0

dt′′eiωeg(t
′−t′′)Gνµ(x, t′′;x, t′). (50)

The integral in second line of Eq. (50) becomes negligible
if ωeg = ωe − ωg � 1 since the integrand oscillates too
fast, so sνµ(ωe) only contributes in some narrow band.
Let sνµ(ωe) = sνµ in this narrow band and pull it out

from the integral. Notice
∫
dωee

iωeg(t
′−t′′) = δ(t′ − t′′)

(We can extend the lower limit to minus infinity because
its contribution in the original integral is negligible.), so
the final result is

Pg,i(t) =
∑
µ,ν

∫ t

0

dt′sνµGνµ(x, t′;x, t′). (51)

The detection rate is

R(t) =
dPg,i(t)

dt
=
∑
µ,ν

sνµGνµ(x, t;x, t)

=
∑
µ,ν

sνµ 〈ψi| Ê−ν (x, t)Ê+
µ (x, t) |ψi〉 . (52)

Notice further that sνµ involves the moment of atom

position operators because d̂ν d̂µ ∝ x̂ν x̂µ, so for isotropic
detectors, we may have sνµ = sδνµ for some constant
number s. For such detectors, the detection rate is

R(t) = s 〈ψi| Ê−(x, t) · Ê+(x, t) |ψi〉 . (53)

As promised before, the effect of electric field enters the
detection rate of photoelectric detector as 〈ψi| Ê−(x, t) ·
Ê+(x, t) |ψi〉.

B. No Double Detection

What is the detection rate for a detector placed at
position x at time t if we have initial field state as one-
photon multimode state |ψi〉 = |1〉? We actually have
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calculated the moment 〈1| Ê−(x, t) · Ê+(x, t) |1〉 in Eq.
(36), copy the result and plug it in Eq. (53)

R(x, t) = s
∑
m,n

2π~
√
ωmωn(um · un)c∗mcne

i(ωm−ωn)t.

(54)

In the single-photon multimode state, R(x, t) can be
interpreted as the probability of finding the photon at
position x at time t and it is analogous to the modulus
squared of the wavefunction of a particle we learned in
quantum mechanics. However, nothing in principle can
distinguish |1〉 from a classical field with the electric field
amplitude specified by right choice of cm,um and ωm so
that the detection rate is identical to what we have in Eq.
(54).

What if we put two detectors at two different places
and try to detect light at different positions x1,x2 at the
same time? Classical, the probability of hearing two clicks
at the same time is the product of rate R(x1, t)R(x2, t).
However, if we are in state |1〉, the probability to detect
the photon at different places at the same time should
be 0. We just have one photon in spacetime! Let us
now demonstrate this. There are two detectors, so the
interaction Hamiltonian in Eq. (39) should be

δĤ2 = −d̂1 · Ê(x1)− d̂2 · Ê(x2). (55)

In the interaction picture

δĤ2(t) = −eiĤat1t/~d̂1e
−iĤat1t/~ · Ê(x1, t)

− eiĤat2t/~d̂2e
−iĤat2t/~ · Ê(x2, t), (56)

where Ĥat1, Ĥat2 are Hamiltonian of atom at position
x1,x2 respectively. The initial and final state is

|i〉 = |g1〉 ⊗ |g2〉 ⊗ |ψi〉 , (57)

|f〉 = |e1〉 ⊗ |e2〉 ⊗ |ψf 〉 . (58)

Since 〈f | δĤ2(t) |i〉 = 0, first order correction vanishes.
We must calculate the second order correction. It will
not be surprising to you that the second order correction
result for the transition rate is

R(x1, t;x2, t) = s2

×
∑
l,m

〈ψi| Ê−l (x1, t)Ê
−
m(x2, t)Ê

+
m(x2, t)Ê

+
l (x1, t) |ψi〉 .

(59)

The detailed derivation can be found in Cohen-
Tannoudji’s book [6]. Let |ψi〉 = |1〉, the detection rate of
a single photon at two different places at the same time
indeed vanishes

R(x1, t;x2, t) = s2

×
∑
l,m

〈1| Ê−l (x1, t)Ê
−
m(x2, t)Ê

+
m(x2, t)Ê

+
l (x1, t) |1〉 .

= 0, (60)

since |1〉 can not survive two consecutive annihilation
operators. This unique property of single-photon multi-
mode state was shown experimentally in 1986 by Grangier,
Roger and Aspect [9].
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